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Abstract We study an information-theoretic variant of the graph coloring prob-
lem in which the objective function to minimize is the entropy of the coloring. The
minimum entropy of a coloring is called the chromatic entropy and was shown by
Alon and Orlitsky (1996) to play a fundamental role in the problem of coding
with side information. In this paper, we consider the minimum entropy coloring
problem from a computational point of view. We first prove that this problem is
NP-hard on interval graphs. We then show that, for every constant ε > 0, it is
NP-hard to find a coloring whose entropy is within(1− ε) logn of the chromatic
entropy, wheren is the number of vertices of the graph. A simple polynomial case
is also identified. It is known that graph entropy is a lower bound for the chromatic
entropy. We prove that this bound can be arbitrarily bad, even for chordal graphs.
Finally, we consider the minimum number of colors required to achieve minimum
entropy and prove a Brooks-type theorem.

1 Introduction

The minimum graph coloring problem asks to color the vertices of a given graph
with a minimum number of colors so that no two adjacent vertices have the same
color. The minimum number of colors in a coloring ofG is thechromatic number
of G, denoted byχ(G). Numerous variants of this problem have been studied, with
different objective functions and constraints [Jensen andToft, 1995]. An example
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of such alternative graph coloring problem is theoptimum cost chromatic partition
problem[Jansen, 2000], in which the cost of a coloring is the sum overall colors
of the size of the corresponding color class multiplied by some coefficient. In the
problem we consider, the cost of each color class is a concavefunction of its size.

The problem is actually defined on specific vertex-weighted graphs called
probabilistic graphs. Aprobabilistic graphis a graph equipped with a probability
distribution on its vertices. Let(G,P) be a probabilistic graph, and letX be any
random variable over the vertex setV(G) of G with distributionP. We define the
entropy H(φ) of a coloringφ as the entropy of the random variableφ(X). In other
words, the entropy ofφ is:

H(φ) = −∑
i

ci logci ,

whereci = ∑x:φ (x)=i P(x) is the probability thatX has colori. Throughout this
paper, we always use base-2 logarithms. Thechromatic entropy Hχ(G,P) of the
probabilistic graph(G,P) is the minimum entropy of any of its colorings. We
consider the problem of finding a minimum entropy coloring ofa probabilistic
graph.

The notion of chromatic entropy was first proposed in an information-theoretic
context by Alon and Orlitsky [1996]. They considered the problem of(zero-error)
coding with side information, in which a random variableX must be transmitted to
a receiver having already some partial information aboutX. Witsenhausen [1976]
showed how this transmission scenario could be encoded in acharacteristic graph
G, the set of vertices of which is the set of possible values ofX. Alon and Orlitsky
[1996] proved that the minimum achievable rate for coding with side information
is betweenHχ(G,P) andHχ(G,P)+ 1 whereP is the probability distribution of
X.

Given a minimum entropy coloring of(G,P), a Huffman code computed from
the color probabilities will provide a suitable code with average length at most
Hχ(G,P) + 1. So minimum entropy colorings directly yield good codes for the
problem of coding with side information. Heuristic algorithms for practical coding
with side information based on minimum entropy colorings have been proposed
by Zhao and Effros [2003].

Minimum entropy coloring also applies to the compression ofdigital im-
age partitions created by segmentation algorithms [Accame, Natale, and Granelli,
2000, Agarwal and Belongie, 2002].

While the problem has received attention in the informationtheory and data
compression community, it has not yet been studied thoroughly from a compu-
tational and combinatorial point of view. Our contributionaims at filling this
gap. Preliminary results have already been presented in Cardinal, Fiorini, and
Van Assche [2004]. Note that another combinatorial optimization problem with
an entropy-like objective function has been recently studied by Halperin and Karp
[2004].

We first prove in Section 2 some useful lemmas concerning the structure
of minimum entropy colorings, and introduce the definition of maximal color-
feasible sequences.

In Section 3, we consider the computational complexity of the minimum en-
tropy coloring problem. We show that the problem is NP-hard even if the input
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graphG is an interval graph, a class of graphs on which many classical NP-hard
problems become polynomial. We also study the approximability of the problem.
Since the chromatic entropy takes value in the interval[0, logn], wheren is the
number of vertices of the graph, it is natural to consider additive approximations,
i.e. approximations within an additive term. This translates to a multiplicative fac-
tor if we consider 2H(φ ) instead ofH(φ) as the objective function. Coloring each
vertex with a different color trivially yields a coloring whose entropy is at most
logn. On the other hand, we show that, unless P=NP, there is no polynomial algo-
rithm finding a coloring of entropy at mostHχ(G,P)+(1−ε) logn for anyε > 0.
This result holds even ifP is the uniform distribution. We end the section by giving
a simple polynomial case, namely when the input graphG satisfiesα(G) ≤ 2.

Alon and Orlitsky showed that the chromatic entropy was bounded from be-
low by a well-known quantity called graph entropy [Körner,1973], also known as
Körner entropy. In Section 4, we study the quality of that lower bound: We first
note that the ratio between the chromatic entropy and the Körner entropy is un-
bounded and then prove that the difference between them can be made arbitrarily
large, even if the graph is chordal and the probability distribution is uniform.

Finally, we provide results on the minimum numberχH(G,P) of colors re-
quired to achieve minimum entropy in Section 5. We first relate minimum en-
tropy colorings toGrundy colorings, the family of graph colorings obtained by
iteratively removing maximal stable sets. It is simple to show that all minimum
entropy colorings are Grundy colorings, hence thatχH(G,P) is bounded by the
Grundy number ofG, defined as the maximum number of colors in a Grundy col-
oring. We also show a converse: any Grundy coloring of a graphG is a minimum
entropy coloring of a probabilistic graph(G,P) for some probability distribution
P. Then we prove that ifP is uniform a Brooks-type theorem holds:χH(G,P) is
at most the maximum degree ofG, providedG is connected and different from an
odd cycle or a complete graph.

2 Preliminaries

Consider a probabilistic graph(G,P), whereG is a graph andP a probability dis-
tribution defined onV(G). For simplicity, we denote byP(S) the sum∑x∈SP(x),
whereS⊆V(G). Formally, acoloring of G is a mapφ from the vertex setV(G)
of G to the set of positive integersN+ such that adjacent vertices are mapped to
different integers. We also useφ−1(i) for the set of vertices colored with color
i. As above, letci be the probability mass of thei-th color class. Hence we have
ci = P(φ−1(i)) = Pr[φ(X) = i], whereX ∼ P(x) is a random vertex with distribu-
tion P. Thecolor sequenceof φ with respect toP is the infinite vectorc = (ci).

A sequencec is said to becolor-feasiblefor a given probabilistic graph(G,P)
if there exists a coloringφ of G havingc as color sequence. Most of the time, we
will restrict to nonincreasing color sequences, that is, color sequencesc such that
ci ≥ ci+1 for all i. This can be easily achieved for a given color sequence by renam-
ing the colors. Note that color sequences define discrete probability distributions
on N

+. The entropy of a coloring is the entropy of the discrete random variable
having its color sequence as distribution. In other words, we haveH(φ) = H(c)
wheneverc is the color sequence ofφ , where (with a slight abuse of terminology)
H(c) is theentropy of color sequence c, that is,H(c) = −∑i∈N+ ci logci .
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The following lemma is of fundamental importance for the remaining proofs
and was noted by Alon and Orlitsky [1996]. The proof is straightforward and only
relies on the concavity of the functionp 7→ −plogp.

Lemma 1 (Alon and Orlitsky, 1996) Let c be a nonincreasing color sequence,
let i, j be two indices such that i< j and letα be a real number such that0< α ≤
c j . Then we have H(c) > H(c1, . . . ,ci−1,ci +α,ci+1, . . . ,c j−1,c j −α,c j+1, . . .).

We now examine the consequences of this lemma. We say that a color se-
quencec dominatesanother color sequenced if ∑ j

i=1ci ≥ ∑ j
i=1di holds for all j .

We denote this byc� d. The partial order� is known as thedominance ordering.
It is often restricted to nonincreasing color sequences in order to avoid unwanted
incomparabilities. We also let≻ denote the strict part of�. A nonincreasing color
sequence is said to bemaximal color-feasiblewhen it is not dominated by any
other (nonincreasing) color sequence of the considered probabilistic graph. The
next lemma indicates that color sequences of minimum entropy colorings are al-
ways maximal color-feasible. The lemma is proved in a more general form in
Hardy et al. [1988].

Lemma 2 Let c and d be two nonincreasing color sequences such that c≻ d.
Then we have H(c) < H(d).

A property similar to that of Lemma 2 was observed for other coloring prob-
lems, in particular by de Werra, Glover, and Silver [1995], de Werra, Hertz,
Kobler, and Mahadev [2000] for minimum cost edge colorings.A further con-
sequence of Lemma 1 is that any minimum entropy coloring can be constructed
by iteratively removing maximal stable sets, i.e., subsetsof pairwise nonadjacent
vertices that are inclusionwise maximal.

Lemma 3 Assume that P(x) > 0 holds for all vertices of a probabilistic graph
(G,P). Let φ be a minimum entropy coloring of G with respect to P. If the color
sequence ofφ is nonincreasing, then the i-th color class ofφ is a maximal stable
set in the subgraph of G induced by the vertices with colors j≥ i.

Proof If the i-th color class is not maximal, we can recolor a vertex of thej th
color class with colori, for some j > i. BecauseP is positive, Lemma 1 implies
that this operation decreases the entropy, a contradiction. ⊓⊔

3 Complexity and approximability

We study in this section the complexity of the minimum entropy coloring problem
and its approximability. We first note that the minimum entropy coloring prob-
lem has already been shown to be NP-hard on planar graphs withthe uniform
distribution [Cardinal et al., 2004].

An interval graphis the intersection graph of a set of open intervals on the
real line: vertices correspond to intervals and two distinct vertices are adjacent if
the corresponding intervals overlap. Our first result showsthat finding a minimum
entropy coloring of a probabilistic interval graph is NP-hard. Since the numerators
and denominators of the probabilities that are used in our reduction are polynomial
in the size of the input, the proof also shows that NP-hardness holds in the strong
sense.
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Fig. 1 Splitting of the circular arc graph.

Theorem 1 Finding a minimum entropy coloring of a probabilistic interval graph
is strongly NP-hard.

Proof Our reduction is from the problem of deciding if a circular arc graphG is
k-colorable, which is NP-complete [Garey, Johnson, Miller,and Papadimitriou,
1980]. Circular arc graphsare defined similarly as interval graphs, except that
vertices correspond to open arcs on a circle. Given a circular arc graphG, one
can construct a circular representation forG in polynomial time [Tucker, 1980].
The basic idea of the proof is to start with a circular-arc graph and cut it open
somewhere to obtain an interval graph. The same idea is used in Marx [2005],
where it is proved that finding a minimum sum coloring of an interval graph is
NP-hard.

Let y be an arbitrary point on the circle that is not the endpoint ofany arc
in the considered representation ofG. Let k′ be the number of arcs in whichy is
included. Ifk′ > k, thenG is notk-colorable. Ifk′ < k, we add to the representation
k−k′ sufficiently small arcs that intersect only arcs includingy. This clearly does
not increase the chromatic number ofG abovek. Thus, it can be assumed thaty is
contained in exactlyk arcs.

Denotea1, . . . ,ak the arcs that containy. By splitting each arcai into two parts
l i andr i at pointy we obtain an interval representation of some interval graphG′

(see Figure 1 for an illustration). As is easily checked,G is k-colorable if and only
if there is ak-coloring ofG′ in which l j andr j receive the same color for 1≤ j ≤ k.

Since interval graphs are chordal, we can use an algorithm designed for
chordal graphs [Golumbic, 2004] to list in linear time all maximal cliques ofG′.
For each such cliqueK, we do the following. If|K| > k then we reject the input
because in this caseG is notk-colorable. Assume now|K| ≤ k. By the Helly prop-
erty for intervals, there exists a pointz of the real line contained in the intervals
of K and in no other. We extend the cliqueK by addingk−|K| sufficiently small
intervals centered atz in the interval representation. This is done in such a way
that the new intervals intersect only intervals corresponding to vertices ofK. As
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before, this operation does not increase the chromatic number of G′ abovek. Let
H denote the resulting interval graph. By construction, all maximal cliques ofH
are also maximum.

Let K denote the collection of maximum cliques ofH and letC = |K |. Con-
sider the auxiliary bipartite graphB havingV(H) andK as color classes in which
x∈V(H) is adjacent toK ∈K wheneverx∈ K. We define a probability distribu-
tion P on the vertices ofH as follows:

P(x) = λ degB(x)+

{
λ j if x = l j or r j ,
0 otherwise,

whereλ > 0 is chosen such that the sum ofP(x) over all verticesx of H equals 1,
and degB(x) denotes the degree ofx in the auxiliary graphB.

Letting c∗ denote the sequenceλ(2k+C,2(k− 1) +C, . . . ,2+C,0, . . .), we
claim that the following two assertions hold for the probabilistic graph(H,P):

(i) if G is k-colorable thenc∗ is color-feasible;
(ii) c∗ dominates all color-feasible sequences and every coloringwhose color

sequence equalsc∗ assigns the same color to verticesl j andr j for all j .
First assume thatG is k-colorable. Then there exists ak-coloringφ of (H,P)

assigning the same color tol j andr j for all j . Let c denote the color sequence of
φ . Without loss of generality, we assume that verticeslk−i+1 andrk−i+1 belong to
the i-th color class. For every colori ∈ {1, . . . ,k}, we have

ci = ∑
x∈φ−1(i)

P(x)

= 2λ(k− i +1)+λ ∑
x∈φ−1(i)

degB(x)

= λ(2(k− i +1)+C).

The third equality holds for the following reasons. Becauseφ is proper, no two
vertices ofH with color i are contained in the same maximum clique. Moreover,
if some maximum clique is disjoint from thei-th color class thenφ cannot possibly
be ak-coloring. It follows that every maximum clique ofH contains exactly one
vertex ofH with color i. Hence the third equality holds and we havec= c∗. Claim
(i) follows.

Now consider any stable setS in H. Clearly, no two vertices ofS are con-
tained in the same clique. For the auxiliary graphB, this means that noK ∈ K

is adjacent to two distinct elements ofS. It follows that the sum∑x∈SdegB(x) is
at mostC. Moreover,Scontains at most one vertex in{l1, . . . , lk} and at most one
vertex in{r1, . . . , rk}. Let j and j ′ be indices such thatS∩{l1, . . . , lk} ⊆ {l j} and
S∩{r1, . . . , rk} ⊆ {r j ′}. Then the total probability mass ofS in (H,P) is at most
λ( j + j ′ +C) with equality only ifS contains bothl j andr j ′ . Let nowψ be any
coloring ofH and letc denote the color sequence ofψ. Again, we assume thatc
is nonincreasing. By what precedes, we have

c1 ≤ c∗1,

c1 +c2 ≤ c∗1 +c∗2,
...

...

c1 +c2 + . . .+ck ≤ c∗1 +c∗2+ . . .+c∗k.
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Hencec∗ dominatesc. Moreover, ifc = c∗ then thei-th color class ofψ contains
both lk−i+1 andrk−i+1 for 1≤ i ≤ k. Claim (ii) follows.

From Lemma 2, we then infer thatG is k-colorable if and only if every mini-
mum entropy coloring of(H,P) hasc∗ as color sequence. We conclude that find-
ing a minimum entropy coloring of a probabilistic interval graph is (strongly)
NP-hard. ⊓⊔

We now consider the approximability of the minimum entropy coloring prob-
lem. Since the objective function takes values in the interval [0, logn], it makes
sense to look for polynomial time algorithms that find a coloring whose entropy
is within an additive term of the chromatic entropy, i.e. is at mostHχ(G,P)+ δ
for some positive real numberδ . We call such an algorithm aδ -approximation
algorithm. Note that coloring each vertex with a different color givesa trivial
logn-approximation algorithm for the minimum entropy coloringproblem.

Theorem 2 There is no(1− ε) logn-approximation algorithm for the minimum
entropy coloring problem, for any constantε > 0, unless P=NP.

Proof Suppose that there exists such an algorithmA for someε. Let δ = ε/2 and
G be a graph such that eitherα < nδ or χ < nδ , wheren,α and χ denotes the
order, stability number and chromatic number ofG, respectively. Note that these
two inequalities cannot hold simultaneously, sinceαχ ≥ n andδ < 1/2.

Let U be the uniform distribution onV(G) and letφA be a coloring returned
by algorithmA on input(G,U). Denote byS1,S2, . . . ,Sk the color classes ofφA,
enumerated in nonincreasing order of cardinality. Let alsoφOPT be any coloring of
minimum entropy. LettingH(φA) andH(φOPT) denote the entropy of respectively
φA andφOPT with respect toU , we have

H(φA) =
k

∑
i=1

|Si |

n
log

n
|Si |

≥
k

∑
i=1

|Si |

n
log

n
|S1|

= log
n
|S1|

,

and also

H(φA) ≤ H(φOPT)+(1− ε) logn≤ logχ +(1− ε) logn,

as any coloring ofG with χ colors has entropy at most logχ. By combining these
inequalities, it follows

|S1| ≥ nε/χ.

If |S1| ≥ nδ , then clearlyα ≥ nδ and soχ < nδ . On the other hand,|S1| < nδ im-
pliesα < nδ , as otherwiseχ < nδ and|S1| ≥ nε/χ ≥ nε/nδ = nδ , a contradiction.
Thus by looking at the size ofS1 we would be able to decide whetherα < nδ or
χ < nδ holds, which has been proved to be NP-hard under randomized reductions
by Feige and Kilian [1998], and derandomized recently by Zuckerman [2007].

⊓⊔

In view of the proof of Theorem 2, the theorem remains true when the problem
is restricted to probabilistic graphs equipped with the uniform distribution.

We end this section by identifying an easy polynomial case for the minimum
entropy coloring problem.
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Theorem 3 There exists a polynomial time algorithm for the minimum entropy
coloring problem restricted to graphs G satisfyingα(G) ≤ 2.

Proof Let (G,P) be a probabilistic graph such thatα(G)≤ 2. A color class in any
coloring of G is composed of one or two vertices. Each color class of size two
corresponds to an edge in the complementḠ of G. In fact, the set of edges of̄G
corresponding to the color classes of size two forms a matching.

Let f (p) = −plog p. If a color class is composed of a single vertexx, then
the contribution of this color to the overall entropy isf (P(x)). Otherwise, the
contribution of a color isf (P(x)+P(y)), wherex andy are the only two vertices
in the color class. So if we denote byM the matching inḠ induced by a coloring
of G, the entropy of this coloring with respect toP is

∑
x6∈V(M)

f (P(x))+ ∑
xy∈E(M)

f (P(x)+P(y))

= ∑
x∈V(G)

f (P(x))+

(

∑
xy∈E(M)

f (P(x)+P(y))− f (P(x))− f (P(y))

)

= H(X)+ ∑
e∈E(M)

ρ(e),

whereX ∼ P(x) andρ(xy) = f (P(x)+P(y))− f (P(x))− f (P(y)). Hence finding
a minimum entropy coloring amounts to finding a maximum weight matching
in Ḡ, each edgee of which has nonnegative weight−ρ(e). This can be done in
O(|V(Ḡ)||E(Ḡ)|+ |V(Ḡ)|2 log|V(Ḡ)|) time [Gabow, 1990]. ⊓⊔

4 Chromatic vs. Körner entropy

We first give a definition of a quantity introduced by Körner [1973] that is often
referred to as graph entropy. Following Alon and Orlitsky [1996] and to avoid
ambiguities, we call it Körner entropy.

The Körner entropy Hκ(G,P) of a probabilistic graph(G,P) can be defined
by

Hκ(G,P) = min
a∈STAB(G)

a>0

− ∑
x∈V(G)

P(x) logax, (1)

where STAB(G) is the stable set polytope ofG, defined inR
V(G) as the convex

hull of the characteristic vectors of the stable sets ofG. The Körner entropy has
a number of applications, the most prominent being the problem of sorting with
partial information studied by Kahn and Kim [1995] in their celebrated paper. See
Simonyi [2001] for a survey on Körner entropy.

We also defineα(G,P) which is simply the maximum weightP(S) of a stable
setSof (G,P).

Lemma 4 For any probabilistic graph(G,P), we have

− logα(G,P) ≤ Hκ(G,P) ≤ Hχ(G,P) ≤ logχ(G).
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Proof The last inequality comes from the fact that in the worst case, the distribu-
tion of the colors in a minimum cardinality coloring is uniform, hence its entropy
is at most logχ(G). The second inequality is proved in Alon and Orlitsky [1996].
We here give a shorter proof based on (1). Consider a minimum entropy coloring
φ of (G,P), and letax = P(φ−1(φ(x)) for each vertexx∈V(G). Since each color
class ofφ is a stable set and the probability masses of the color classes sum up to
one, the vectora is a convex combination of characteristic vectors of stablesets,
hence we havea ∈ STAB(G). Furthermore we can check that for this value ofa
we have

− ∑
x∈V(G)

P(x) logax = − ∑
x∈V(G)

P(x) logP(φ−1(φ(x))) (2)

= −∑
i

P(φ−1(i)) logP(φ−1(i)) (3)

= Hχ(G,P), (4)

thus the minimum definingHκ(G,P) is at mostHχ(G,P).
The first inequality is derived as follows. Leta ∈ STAB(G). A stable set has

weight at mostα(G,P), so we have∑x∈V(G) P(x)ax ≤ α(G,P). Combining this
with the concavity ofx 7→ log(x) yields

− ∑
x∈V(G)

P(x) logax ≥− log ∑
x∈V(G)

P(x)ax ≥− logα(G,P).

⊓⊔

The bounds on the chromatic entropy given in Lemma 4 can be computed
in polynomial time only for certain classes of probabilistic graphs. In particular,
whenG is a perfect graph, the two lower bounds can be computed (to any fixed
accuracy) in polynomial time, as follows from Grötschel, Lovász, and Schrijver
[1993]. The chromatic number can also be computed in polynomial time on these
graphs.

In the next two propositions we study how good the Körner entropy is as a
lower bound on the chromatic entropy.

Proposition 1 The ratio Hχ(G,P)/Hκ(G,P) can be arbitrarily large.

Proof Let Gn be the graph consisting of a matching of sizen+1 and letε = 1/n2.
Choose an edgexy∈ E(Gn) and letPn be the probability distribution such that
Pn(x) = (1−nε)(1−ε), Pn(y) = (1−nε)ε andPn(z) = ε/2 for z∈V(Gn),z 6= x,y.

Defineh(p) : (0,1) → R as the functionp 7→ −plog p− (1− p) log(1− p).
The chromatic and Körner entropy ofGn are easily obtained:

Hχ(Gn,Pn) =h(nε(1/2− ε)+ ε),

Hκ(Gn,Pn) =nε +(1−nε)h(ε).

Now, it can be checked that

lim
n→∞

Hχ(Gn,Pn)

Hκ(Gn,Pn)
= ∞.

⊓⊔
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Fig. 2 The graphG3(3).

The above proof does not show that the differenceHχ(G,P)−Hκ(G,P) is not
bounded. We now prove this in the next proposition.

Proposition 2 The difference Hχ(G,P)−Hκ(G,P) can be arbitrarily large, even
if G is chordal and P is the uniform distribution.

In order to prove this result, we define a graphGk(n) (n≥ 2,k≥ 1) inductively
onk. The graphG1(n) is the single vertex graphK1, and fork≥ 2 the graphGk(n)
is obtained as follows:

– start with the complete graphKnk−1 on nk−1 vertices,
– partition its vertex setV(Knk−1) in n setsV1,V2, . . . ,Vn of equal sizes,
– for each setVi (1 ≤ i ≤ k) add a disjoint copy ofGk−1(n) and all edges with

one endpoint inVi and the other in the vertex set of thei-th copy ofGk−1(n).

A drawing of the graphG3(3) is given in Figure 2. It can easily be checked
thatGk(n) is chordal, that is, it contains no induced cycle of length longer than 3.
We study in the next two lemmas the behavior ofHκ(Gk(n),U) andHχ(Gk(n),U)
whenk is fixed andn goes to infinity, whereU is the uniform distribution. Note
thatGk(n) hasknk−1 vertices in total, so we haveU(x) = 1

knk−1 for all verticesx.

Lemma 5 Hκ(Gk(n),U) ≤ (k−1)
2 logn+o(1).

Proof We first associate to each vertex ofGk(n) a levelbetween 1 andk: the only
vertex ofG1(n) has level 1, and fork ≥ 2 the level of a vertexx is eitherk if it
belongs to thecentral clique Knk−1 arising in the definition ofGk(n) above, or its
level in thei-th copy of the graphGk−1(n).

Now consider the point ˜a of R
V(Gk(n)) defined by

ãx =
(n−1)k−i

nk−1 ,

wherei denotes the level of vertexx. As chordal graphs are perfect, it follows from
a classical theorem of Chvátal [1975] that STAB(Gk(n)) is described by the trivial
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inequalitiesax ≥ 0 for all x ∈ V(Gk(n)), and the clique inequalities∑x∈K ax ≤ 1
for all cliquesK of Gk(n). Using this, it can be checked that ˜a ∈ STAB(Gk(n))
(for instance, by induction onk). This point yields the desired upper bound on
Hκ(Gk(n),U):

Hκ(Gk(n),U) ≤ ∑
x∈V(Gk(n))

−
1

knk−1 logãx

=
1

knk−1 ∑
1≤i≤k

nk−1 log
nk−1

(n−1)k−i

= (k−1) logn−
k−1

2
log(n−1)

=
(k−1)

2
logn+o(1).

The first equality above holds because each level ofGk(n) contains exactlynk−1

vertices. ⊓⊔

Lemma 6 Hχ(Gk(n),U) ≥ logk+ (k−1)
2 logn−o(1).

Proof We first note that the unique maximum clique ofGk(n) is its central clique
Knk−1, implying thatχ(Gk(n)) = nk−1 as chordal graphs are perfect.

Let c be a maximal color-feasible sequence of(Gk(n),U). We prove the fol-
lowing by induction onk:

c1 ≥
(n−1)k−1

knk−1 ,

c j ≥
(n−1)k−i

knk−1 for 2≤ i ≤ k andni−2 +1≤ j ≤ ni−1. (5)

This is clearly true fork= 1. From now on, we assumek≥ 2. Becauseχ(Gk(n)) =
nk−1, we havec j ≥

1
knk−1 for j ∈ {nk−2 + 1, . . . ,nk−1}. Thus the casei = k in (5)

is settled. Now decomposec asc = c0 + c1 + · · ·+ cn wherec0 counts the prob-
ability masses coming from the central clique andc1, . . . ,cn count those coming
from then copies ofGk−1(n) for each color class. Letdl (1 ≤ l ≤ n) denote the
sequencecl with all zero entries removed, except the trailing zeroes. Becausec
is maximal, the sequencekn

k−1dl is a maximal color-feasible sequence ofGk−1(n)

for all l . Moreover, the maximality ofc and the structure ofGk(n) imply that at
most one of then componentsc1

j , . . . ,c
n
j is zero for anyj between 1 andnk−2.

Indeed, a stable set ofGk(n) either contains no vertex of the central clique and
is thus composed ofn stable sets coming from each of then copies ofGk−1(n),
or includes exactly one vertex of the central clique, sayx, and is thus composed
of x andn− 1 stable sets coming fromn− 1 copies ofGk−1(n) (that is, all the
copies except the one which is totally adjacent tox). In particular, if two of the
n componentsc1

j , . . . ,c
n
j equalled zero we would be able to switch the entriescl

j

andcl
j ′ for somel and somej ′ > j such thatcl

j = 0 andcl
j ′ > 0, while keeping

a color-feasible sequencec, contradicting the maximality ofc. Let l ∈ {1, . . . ,n}.
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Becausedl is maximal color-feasible, it is nonincreasing. So ifcl
j 6= 0, we have

cl
j ≥ dl

j . From the induction hypothesis applied todl and the latter observations,
we infer the following inequalities:

c1 ≥ (n−1) (n−1)k−2

knk−1 = (n−1)k−1

knk−1

c j ≥ (n−1) (n−1)k−i−1

knk−1 = (n−1)k−i

knk−1 for 2≤ i ≤ k−1 andni−2 +1≤ j ≤ ni−1.

Let ĉ be the sequence such thatĉ j = 0 for j > nk−1, ĉ j is the minimum possible
value ofc j allowed by (5) for 2≤ j ≤ nk−1 and ĉ1 = 1−∑ j≥2 ĉ j . As is easily
verified,ĉ dominatesc. Using Lemma 2 we get

Hχ(Gk(n),U) ≥ H(ĉ) = logk+
(k−1)

2
logn−o(1).

⊓⊔

Proposition 2 follows from Lemmas 5 and 6. Before turning to the next section,
we mention that we can show that Proposition 2 also holds whenG is an interval
graph andP is arbitrary by adapting the construction used above.

5 Number of Colors

We consider in this section the number of colors used in a minimum entropy color-
ing. We denote byχH(G,P) the minimum number of colors in a minimum entropy
coloring of the probabilistic graph(G,P). We mention that the upper bounds on
the number of colors used in a minimum entropy coloring givenin this section
hold for all minimum entropy colorings whenever we haveP(x) > 0 for all ver-
ticesx.

We first relate minimum entropy colorings to another kind of colorings stud-
ied in the literature. AGrundy coloringof a graph is a coloring such that for any
color i, if a vertex has colori then it is adjacent to at least one vertex of colorj for
all j < i. TheGrundy numberΓ (G), also called thefirst-fit online coloring num-
ber [Pemmaraju, Raman, and Varadarajan, 2004], of a graphG is the maximum
number of colors in a Grundy coloring ofG. See Erdös, Hedetniemi, Laskar, and
Prins [2003] for a recent survey of this topic. Equivalently, Grundy colorings are
colorings that can be obtained by iteratively removing maximal stable sets.

Proposition 3 Any minimum entropy coloring of a graph G equipped with a prob-
ability distribution on its vertices is a Grundy coloring. Moreover, for any Grundy
coloringφ of G, there exists a probability mass function P over V(G) such thatφ
is the unique minimum entropy coloring of(G,P).

Proof The first part of the claim is given by Lemma 3. We prove the second part
by induction on the numberk of colors used inφ . It is trivially true fork= 1, since
in that caseG has no edge and the unique minimum entropy coloring with respect
to any positive distributionP assigns the same color to every vertex. Now assume
that the proposition holds for colorings with less thank colors. We letS= φ−1(1)
andG′ be the subgraph induced byV(G) \S. By the induction hypothesis, there
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exists a distributionP′ such thatφ restricted toG′ is the unique minimum entropy
coloring of(G′,P′).

We define a probability distributionP for G as follows. For eachx∈V(G) we
setP(x) = P′(x)/t if x∈V \SandP(x) = (1−1/t)/|S| otherwise. The entropy of
φ with respect toP equals

−(1−1/t) log(1−1/t)−∑
i≥2

(
P′(φ−1(i))/t

)
log
(
P′(φ−1(i))/t

)
.

We first show that ift is large enough, then any minimum entropy coloringψ
of (G,P) assigns the same color to vertices inS. Indeed, assume that vertices inS
do not all have the same color under coloringψ. The maximum probabilityPmax
of a color class inψ then satisfies

Pmax≤ 1− (1−1/t)/|S|= (|S|−1+1/t)/|S|.

Furthermore, the entropy ofψ with respect toP is at least

− logPmax≥ log(|S|/(|S|−1+1/t)).

As t tends to infinity, the difference between this lower bound onthe entropy of
ψ and the entropy ofφ tends to log(|S|/(|S|−1)). Thusψ cannot have minimum
entropy ift is large enough.

Thus, assumingt large enough,S is a color class ofψ (recall that the stable
setS is maximal inG). The entropy of any such coloringψ can be written as
H ′/t + h(1/t), whereH ′ denotes the entropy with respect toP′ of the restriction
of ψ toG′, andh(1/t) is the entropy of a Bernoulli random variable with parameter
1/t. This shows that minimizing the entropy of any coloringψ assigning the same
color to all vertices ofSamounts to minimizing the entropy of the same coloring
restricted to(G′,P′). Now it follows from the induction hypothesis thatψ andφ
have the same color classes, which concludes the proof. ⊓⊔

It is not difficult to see that the Grundy number of a tree can bearbitrarily
large: start for instance with any treeT and attach a new vertexv′ to each vertexv
of T. Then the resulting tree has a Grundy number strictly largerthanT, since the
set of new vertices is a maximal stable set. It follows by the previous proposition
that χH(T,P) can also be arbitrarily large, whereT is a tree. We note that this
observation can be strengthened to the case ofP uniform, as shown in Cardinal
et al. [2004].

Proposition 4 (Cardinal et al., 2004)χH(G,P) is not bounded by any function
of χ(G), even if P is uniform and G is a tree.

We now consider upper bounds onχH(G,P) in terms of the maximum degree
∆ (G) of a vertex inG. We first note the following easy lemma, which was already
noted in Cardinal et al. [2004].

Lemma 7 (Cardinal et al., 2004)For any probabilistic graph(G,P), we have
χH(G,P) ≤ ∆ (G)+1.
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Brooks [1941] showed a classical result stating that ifG is a connected graph
different from a complete graph or an odd cycle, thenχ(G) ≤ ∆ (G), where∆ (G)
is the maximum degree of a vertex inG. There are graphsG other than those cited
above that have a Grundy coloring using∆ (G)+1 colors, thus by Proposition 3 we
cannot extend Brooks’ theorem by substitutingχH(G,P) to χ(G) without making
any assumption onP. In the next theorem we prove that such an extension holds
whenP is the uniform distribution.

Theorem 4 If G is a connected graph different from a complete graph or anodd
cycle, thenχH(G,U) ≤ ∆ (G), where U is the uniform distribution over V(G).

Proof The proof closely follows the one given in Diestel [2000] forBrooks’ the-
orem. We borrow the path notation in whichxPy is a path between verticesx and
y, andẋ means that vertexx is not included. The considered path should be clear
from the context. For simplicity, we use the shorthand notation P(i) = P(φ−1(i))
for a colori.

Let ∆ = ∆ (G) andn = |G|. If ∆ ≤ 2, eitherG is an odd cycle and we have
nothing to show, orG is a path or an even cycle and the proposition is trivial.
Hence we assume∆ ≥ 3. Let us consider a minimum entropy coloringφ of (G,U)
with colors in the set{1,2, . . . ,∆ +1}. We show that if the∆ +1 colors are used,
thenφ cannot have minimum entropy with respect toU , unlessG is the complete
graph.

Without loss of generality, we consider that color∆ +1 has minimum weight:
for all 1 ≤ i ≤ ∆ , we haveP(i) ≥ P(∆ + 1). Let us choose a vertexx ∈ V(G)
such thatφ(x) = ∆ +1. The vertexx must be adjacent to∆ vertices colored with
colors 1 to∆ , otherwise it could be recolored and, from Lemma 1,φ would not
have minimum entropy. We denote byxi the vertex adjacent tox and such that
φ(xi) = i. Let F be defined as the graph induced by the vertices colored with
colors{1,2, . . . ,∆}, Fi, j as the graph induced onF by the vertices colored with
colors i or j , andCi j (respectivelyCji ) as the component ofFi, j containingxi
(respectivelyx j ).

We first show the following:

Ci j is a path. (6)

First, xi must have a single neighbor inCi j . Otherwise, it could be recolored,
with a colork different of i and j andx could in turn be recolored with colori.
The probability massP(∆ + 1) would decrease by 1/n, andP(k) would increase
by 1/n. From Lemma 1 and the fact thatP(∆ + 1) ≤ P(k), the entropy would
decrease, andφ would not be optimal.

Let us assume thatCi j is not a path. Then there must be an inner vertex ofCi j
having three identically colored neighbors. Let us definey as the first such vertex
on the path fromxi in Ci j . The vertexy can be recolored with a colork different
from i or j , since its neighbors cannot have more than∆ −2 distinct colors. We
can then perform the following steps:

1. recolory with colork,
2. interchange colorsi and j on the pathxiPẏ,
3. recolorx with color i.
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We show that they can only decrease the entropy, and therefore thatφ cannot be
optimal unlessCi j is a path. We have to consider two cases: eitherφ(y) = i or
φ(y) = j .

If φ(y) = i, then the pathxiPẏ is even. Interchanging the colorsi and j on this
path does not change the probability massesP(i) andP( j). The probabilityP(i) is
decreased by 1/n wheny is recolored, but increased by 1/n whenx is recolored.
Hence the overall sequence of changes leaves the probability P(i) unchanged,
while P(∆ + 1) is decreased by 1/n, andP(k) is increased by 1/n. SinceP(∆ +
1) ≤ P(k), we have the conditions of Lemma 1 and the entropy can only decrease.

If φ(y) = j , then the pathxiPẏ is odd. Interchanging colorsi and j on this path
decreasesP(i) by 1/n and increasesP( j) by 1/n. Recoloringy decreasesP( j) by
1/n and recoloringx increasesP(i) by 1/n. So the probability massesP(i) and
P( j) are left unchanged by the operations. Overall, we only have thatP(∆ +1) is
decreased by 1/n, andP(k) is increased by 1/n. Again, Lemma 1 holds and the
entropy decreases.

Ci j = Cji is axi −x j path. (7)

To show this, we assume thatCi j andCji are disjoint components ofFi, j . Then
we can interchange colorsi and j in Ci j and recolorx with color i. We again have
two cases: eitherCi j is an even path, andP(∆ +1) is decreased by 1/n andP(i) is
increased by 1/n, orCi j is an odd path, andP(∆ +1) is decreased by 1/n andP( j)
is increased by 1/n. In both cases, Lemma 1 holds and the entropy decreases.

Notice that (7) implies that theCi j ’s are even paths.

For distincti, j ,k we haveCi j ∩Cjk = {x j}. (8)

Otherwise there would be a vertexx j 6= y ∈ Ci j ∩Cjk with φ(y) = j and two
pairs of neighbors colored withi andk respectively. We could then apply the same
three steps as in the proof of point (6).

Now if the neighborsxi of x are pairwise adjacent, thenG can only be the
graph induced byx and {x1,x2, . . . ,x∆}, because all vertices have maximum
degree∆ . HenceG is the complete graph, and we do not have to show anything.

We may thus assume without loss of generality thatx1x2 6∈ E(G). Let y be the
neighbor ofx1 in C12, with φ(y) = 2. Interchanging colors 1 and 3 inC13 we obtain
a new coloringφ ′ of G. This coloring has the same entropy asφ , sinceC13 is an
even path. We definex′i andC′

i j with respect to the new coloringφ ′. As a neighbor
of x1 = x′3, the vertexy now lies inC′

23, for φ(y) = φ ′(y) = 2. By (8), however, the
path ˙x1C12 retained its original coloring, soy∈ ẋ1C12 ⊂C′

12. Hencey∈C′
23∩C′

12,
contradicting (8). ⊓⊔
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