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Abstract We study an information-theoretic variant of the graph dalp prob-
lem in which the objective function to minimize is the entyayd the coloring. The
minimum entropy of a coloring is called the chromatic enyrapd was shown by
Alon and Orlitsky (1996) to play a fundamental role in thekgemn of coding
with side information. In this paper, we consider the minimentropy coloring
problem from a computational point of view. We first provetttias problem is
NP-hard on interval graphs. We then show that, for every teois > 0, it is
NP-hard to find a coloring whose entropy is wittiith— £)logn of the chromatic
entropy, where is the number of vertices of the graph. A simple polynomialca
is also identified. It is known that graph entropy is a loweutbfor the chromatic
entropy. We prove that this bound can be arbitrarily badndeechordal graphs.
Finally, we consider the minimum number of colors requiedd¢hieve minimum
entropy and prove a Brooks-type theorem.

1 Introduction

The minimum graph coloring problem asks to color the vestioka given graph
with a minimum number of colors so that no two adjacent vegicave the same
color. The minimum number of colors in a coloring®fis thechromatic number

of G, denoted by (G). Numerous variants of this problem have been studied, with
different objective functions and constraints [Jensen®oft 1995]. An example
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of such alternative graph coloring problem is tmimum cost chromatic partition
problem[Jansen, 2000], in which the cost of a coloring is the sum allerolors
of the size of the corresponding color class multiplied bjnsaoefficient. In the
problem we consider, the cost of each color class is a corfaaeton of its size.

The problem is actually defined on specific vertex-weightesplgs called
probabilistic graphs. Avrobabilistic graphis a graph equipped with a probability
distribution on its vertices. LG, P) be a probabilistic graph, and ¥t be any
random variable over the vertex 8&tG) of G with distributionP. We define the
entropy H @) of a coloringg as the entropy of the random varialgéX). In other
words, the entropy o is:

H(g) = - cilogg;,

whereci = 3 x.gx—i P(X) is the probability thaX has colori. Throughout this
paper, we always use base-2 logarithms. Thematic entropy K(G,P) of the
probabilistic graph(G, P) is the minimum entropy of any of its colorings. We
consider the problem of finding a minimum entropy coloringagbrobabilistic
graph.

The notion of chromatic entropy was first proposed in an mfmtion-theoretic
context by Alon and Orlitsky [1996]. They considered thelgpeon of (zero-error)
coding with side informatiorin which a random variabl& must be transmitted to
a receiver having already some partial information abaut/itsenhausen [1976]
showed how this transmission scenario could be encodedharacteristic graph
G, the set of vertices of which is the set of possible values.@lon and Orlitsky
[1996] proved that the minimum achievable rate for codinthwide information
is betweerH, (G, P) andHy (G, P) + 1 whereP is the probability distribution of
X.

Given a minimum entropy coloring ¢f5, P), a Huffman code computed from
the color probabilities will provide a suitable code witheaage length at most
Hy (G,P) + 1. So minimum entropy colorings directly yield good codestfee
problem of coding with side information. Heuristic algbrits for practical coding
with side information based on minimum entropy coloringsehbeen proposed
by Zhao and Effros [2003].

Minimum entropy coloring also applies to the compressiordigfital im-
age partitions created by segmentation algorithms [Ac¢ciNatale, and Granelli,
2000, Agarwal and Belongie, 2002].

While the problem has received attention in the informatioeory and data
compression community, it has not yet been studied tholgugbm a compu-
tational and combinatorial point of view. Our contributiaims at filling this
gap. Preliminary results have already been presented idir@édy Fiorini, and
Van Assche [2004]. Note that another combinatorial optation problem with
an entropy-like objective function has been recently stddhy Halperin and Karp
[2004].

We first prove in Section 2 some useful lemmas concerning thetare
of minimum entropy colorings, and introduce the definitidnntaximal color-
feasible sequences.

In Section 3, we consider the computational complexity efrfinimum en-
tropy coloring problem. We show that the problem is NP-harenef the input



graphG is an interval graph, a class of graphs on which many cladsieehard
problems become polynomial. We also study the approxiritglboil the problem.
Since the chromatic entropy takes value in the intef®dbgn|, wheren is the
number of vertices of the graph, it is natural to consideiitagdapproximations,
i.e. approximations within an additive term. This transtatio a multiplicative fac-
tor if we consider 2(%) instead ofH (¢) as the objective function. Coloring each
vertex with a different color trivially yields a coloring vese entropy is at most
logn. On the other hand, we show that, unlesd\®, there is no polynomial algo-
rithm finding a coloring of entropy at mosty (G,P) 4 (1—&)logn for anye > 0.
This result holds even P is the uniform distribution. We end the section by giving
a simple polynomial case, namely when the input gr@éatisfiesxr (G) < 2.

Alon and Orlitsky showed that the chromatic entropy was loieahfrom be-
low by a well-known quantity called graph entropy [Korn&9,73], also known as
Kdrner entropy In Section 4, we study the quality of that lower bound: Wet firs
note that the ratio between the chromatic entropy and thméttentropy is un-
bounded and then prove that the difference between themecarate arbitrarily
large, even if the graph is chordal and the probability distion is uniform.

Finally, we provide results on the minimum numbegy(G,P) of colors re-
quired to achieve minimum entropy in Section 5. We first elatinimum en-
tropy colorings toGrundy colorings the family of graph colorings obtained by
iteratively removing maximal stable sets. It is simple towtthat all minimum
entropy colorings are Grundy colorings, hence thatG, P) is bounded by the
Grundy number o5, defined as the maximum number of colors in a Grundy col-
oring. We also show a converse: any Grundy coloring of a g@pha minimum
entropy coloring of a probabilistic grafits, P) for some probability distribution
P. Then we prove that iP is uniform a Brooks-type theorem holdg; (G, P) is
at most the maximum degree Gf providedG is connected and different from an
odd cycle or a complete graph.

2 Preliminaries

Consider a probabilistic grapl®, P), whereG is a graph and? a probability dis-
tribution defined oV (G). For simplicity, we denote b(S) the sumy ,.sP(x),
whereS C V(G). Formally, acoloring of G is a mapg from the vertex se¥ (G)
of G to the set of positive integef$™ such that adjacent vertices are mapped to
different integers. We also usg (i) for the set of vertices colored with color
i. As above, let; be the probability mass of theth color class. Hence we have
¢ =P(@ (i) = Pr[o(X) = i], whereX ~ P(x) is a random vertex with distribu-
tion P. Thecolor sequencef ¢ with respect tdP is the infinite vectoc = (¢;).

A sequence is said to becolor-feasiblefor a given probabilistic graptG, P)
if there exists a coloring of G havingc as color sequence. Most of the time, we
will restrict to nonincreasing color sequences, that igprceequences such that
¢ > ¢.1 for alli. This can be easily achieved for a given color sequence lamen
ing the colors. Note that color sequences define discretapility distributions
on N*. The entropy of a coloring is the entropy of the discrete camd/ariable
having its color sequence as distribution. In other words haveH (¢) = H(c)
whenever is the color sequence ¢f, where (with a slight abuse of terminology)
H (c) is theentropy of color sequence that is,H(c) = — 3+ Cilogc;.



The following lemma is of fundamental importance for the aémng proofs
and was noted by Alon and Orlitsky [1996]. The proof is stindfigrward and only
relies on the concavity of the functign— —plogp.

Lemma 1 (Alon and Orlitsky, 1996) Let ¢ be a nonincreasing color sequence,
leti, j be two indices such thaki j and leta be a real number such that< a <
cj. Then we have ) > H(cy,...,Ci—1,G+a,Ciy1,...,Cj—1,C) — ,Cj41,...).

We now examine the consequences of this lemma. We say thdbases

guencec dominatesanother color sequenckif zijzlci > Zijzldi holds for all j.
We denote this bg > d. The partial ordek is known as th&ominance ordering
It is often restricted to nonincreasing color sequencesderto avoid unwanted
incomparabilities. We also let denote the strict part ¢f. A nonincreasing color
sequence is said to bmaximal color-feasiblevhen it is not dominated by any
other (nonincreasing) color sequence of the considereghpitistic graph. The
next lemma indicates that color sequences of minimum eyptroforings are al-
ways maximal color-feasible. The lemma is proved in a monmeegad form in
Hardy et al. [1988].

Lemma 2 Let ¢ and d be two nonincreasing color sequences such thatlc
Then we have k) < H(d).

A property similar to that of Lemma 2 was observed for othdoiing prob-
lems, in particular by de Werra, Glover, and Silver [1995, \Werra, Hertz,
Kobler, and Mahadev [2000] for minimum cost edge coloringgurther con-
sequence of Lemma 1 is that any minimum entropy coloring @odnstructed
by iteratively removing maximal stable sets, i.e., subséfzirwise nonadjacent
vertices that are inclusionwise maximal.

Lemma 3 Assume that ) > 0 holds for all vertices of a probabilistic graph
(G,P). Let @ be a minimum entropy coloring of G with respect to P. If theocol
sequence of is nonincreasing, then the i-th color class@fs a maximal stable
set in the subgraph of G induced by the vertices with colged. j

Proof If the i-th color class is not maximal, we can recolor a vertex of jtie
color class with coloi, for somej > i. Because® is positive, Lemma 1 implies
that this operation decreases the entropy, a contradiction ad

3 Complexity and approximability

We study in this section the complexity of the minimum engroploring problem
and its approximability. We first note that the minimum eptr@oloring prob-
lem has already been shown to be NP-hard on planar graphghweitbniform
distribution [Cardinal et al., 2004].

An interval graphis the intersection graph of a set of open intervals on the
real line: vertices correspond to intervals and two distugstices are adjacent if
the corresponding intervals overlap. Our first result shilvasfinding a minimum
entropy coloring of a probabilistic interval graph is NPheSince the numerators
and denominators of the probabilities that are used in aluatgon are polynomial
in the size of the input, the proof also shows that NP-harslhefds in the strong
sense.
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Fig. 1 Splitting of the circular arc graph.

Theorem 1 Finding a minimum entropy coloring of a probabilistic inted graph
is strongly NP-hard.

Proof Our reduction is from the problem of deciding if a circulac graphG is
k-colorable, which is NP-complete [Garey, Johnson, Mileerd Papadimitriou,
1980]. Circular arc graphsare defined similarly as interval graphs, except that
vertices correspond to open arcs on a circle. Given a cirartagraphG, one
can construct a circular representation ®in polynomial time [Tucker, 1980].
The basic idea of the proof is to start with a circular-arcpgrand cut it open
somewhere to obtain an interval graph. The same idea is nskthix [2005],
where it is proved that finding a minimum sum coloring of areimél graph is
NP-hard.

Lety be an arbitrary point on the circle that is not the endpoinamf arc
in the considered representation@fLet k' be the number of arcs in whighis
included. Ifk’ > k, thenG is notk-colorable. Ifk’ < k, we add to the representation
k — K sufficiently small arcs that intersect only arcs includinghis clearly does
not increase the chromatic number®abovek. Thus, it can be assumed that
contained in exactli arcs.

Denoteay, ..., a the arcs that contaiyn By splitting each are; into two parts
li andr; at pointy we obtain an interval representation of some interval gi@&ph
(see Figure 1 for anillustration). As is easily check@ds k-colorable if and only
if there is ak-coloring of G’ in whichl; andr; receive the same color ford j <k.

Since interval graphs are chordal, we can use an algorithsigiked for
chordal graphs [Golumbic, 2004] to list in linear time all xivaal cliques ofG'.
For each such cliqui, we do the following. If[K| > k then we reject the input
because in this casgis notk-colorable. Assume noyK| < k. By the Helly prop-
erty for intervals, there exists a poinbf the real line contained in the intervals
of K and in no other. We extend the cligieby addingk — |K| sufficiently small
intervals centered atin the interval representation. This is done in such a way
that the new intervals intersect only intervals corresjpugdo vertices oK. As



before, this operation does not increase the chromatic eufls’ abovek. Let
H denote the resulting interval graph. By construction, akimal cliques oH
are also maximum.

Let # denote the collection of maximum cliquestéfand letC = |#"|. Con-
sider the auxiliary bipartite gragghavingV (H) and_#" as color classes in which
xeV(H) is adjacent t& € .# whenevex € K. We define a probability distribu-
tion P on the vertices oH as follows:

Aj ifx=lIjorrj,
P(X)—/\dega(XH{oJ otherV\}ise,J

whereA > 0 is chosen such that the sumR{i) over all verticescof H equals 1,
and deg(x) denotes the degree in the auxiliary graptB.

Letting c* denote the sequeneg2k+C,2(k—1)+C,...,2+C,0,...), we
claim that the following two assertions hold for the proliabic graph(H,P):

() if Gisk-colorable thert* is color-feasible;
(i) c* dominates all color-feasible sequences and every colavimgse color
sequence equats assigns the same color to vertidgandr; for all j.

First assume thas is k-colorable. Then there existskecoloring ¢ of (H,P)
assigning the same color tpandr; for all j. Letc denote the color sequence of
@. Without loss of generality, we assume that vertiges, 1 andry_;. 1 belong to
thei-th color class. For every colok {1,...,k}, we have

= > PK
xe@~L(i)
=2 (k-i+1)+A Y deg(x)

xep~1(i)
=A(2(k—i+1)+C).

The third equality holds for the following reasons. Becagss proper, no two
vertices ofH with colori are contained in the same maximum clique. Moreover,
if some maximum clique is disjoint from theth color class thep cannot possibly
be ak-coloring. It follows that every maximum clique &f contains exactly one
vertex ofH with colori. Hence the third equality holds and we have c*. Claim
(i) follows.

Now consider any stable s&in H. Clearly, no two vertices of are con-
tained in the same clique. For the auxiliary graphthis means that n& € 7
is adjacent to two distinct elements 8flt follows that the sung . sdeg(X) is
at mostC. Moreover,S contains at most one vertex {f,...,lx} and at most one
vertex in{ry,...,rc}. Let j andj’ be indices such th@n {l4,....Ix} C{l;} and
SN {ra,...,rx} € {ry’}. Then the total probability mass &fin (H,P) is at most
A(j + j'+C) with equality only if S contains both; andrj. Let now ¢ be any
coloring ofH and letc denote the color sequence @f Again, we assume that
is nonincreasing. By what precedes, we have

C1 S CI)
Ci+cC < CI+C§,

G+C+...+k <Cl+C+...+Cp.



Hencec* dominatesc. Moreover, ifc = ¢* then thei-th color class ofp contains
bothly_j,1 andry_j,1 for 1 <i < k. Claim (ii) follows.

From Lemma 2, we then infer th& is k-colorable if and only if every mini-
mum entropy coloring ofH, P) hasc* as color sequence. We conclude that find-
ing a minimum entropy coloring of a probabilistic intervadagh is (strongly)
NP-hard. ad

We now consider the approximability of the minimum entropyocing prob-
lem. Since the objective function takes values in the irgkj® logn], it makes
sense to look for polynomial time algorithms that find a ciwigrwhose entropy
is within an additive term of the chromatic entropy, i.e. ist@stH, (G,P) + o
for some positive real number. We call such an algorithm &-approximation
algorithm Note that coloring each vertex with a different color gigesrivial
logn-approximation algorithm for the minimum entropy coloripgpblem.

Theorem 2 There is no(1— €)logn-approximation algorithm for the minimum
entropy coloring problem, for any constanit> 0, unless P-NP.

Proof Suppose that there exists such an algorithfar somes. Letd = £/2 and
G be a graph such that eithar< n® or x < n®, wheren,a and x denotes the
order, stability number and chromatic numbeiGyfrespectively. Note that these
two inequalities cannot hold simultaneously, simge > nandd < 1/2.

LetU be the uniform distribution oW (G) and letgs be a coloring returned
by algorithmA on input(G,U). Denote byS;, S, ..., S the color classes afp,
enumerated in nonincreasing order of cardinality. Let gisor be any coloring of
minimum entropy. Lettindd (¢n) andH (@opt) denote the entropy of respectively
@ and@opT With respect tdJ, we have

k k
H(gn) = Z@log%' > _Z%Io%—snﬂ = Iogé,

and also
H(g) < H(@pr)+ (1-¢€)logn<logx + (1-¢)logn,

as any coloring o6 with x colors has entropy at most Iqg By combining these
inequalities, it follows
Si| > nf/x.

If |S1| > n?, then clearlyr > n® and sox < n®. On the other handS;| < n® im-
pliesa < n, as otherwisg < n® and|S;| > nf/x > nf /n® = n%, a contradiction.
Thus by looking at the size & we would be able to decide whether< n® or
X < nd holds, which has been proved to be NP-hard under randomézieittions

by Feige and Kilian [1998], and derandomized recently bykéaman [2007].
a

In view of the proof of Theorem 2, the theorem remains truemthe problem
is restricted to probabilistic graphs equipped with thdami distribution.

We end this section by identifying an easy polynomial casete minimum
entropy coloring problem.



Theorem 3 There exists a polynomial time algorithm for the minimunrapyt
coloring problem restricted to graphs G satisfyiogG) < 2.

Proof Let (G, P) be a probabilistic graph such thafG) < 2. A color class in any
coloring of G is composed of one or two vertices. Each color class of sipe tw
corresponds to an edge in the complent@mdf G. In fact, the set of edges @&
corresponding to the color classes of size two forms a magchi

Let f(p) = —plogp. If a color class is composed of a single veriexthen
the contribution of this color to the overall entropy 1$P(x)). Otherwise, the
contribution of a color isf (P(x) + P(y)), wherex andy are the only two vertices
in the color class. So if we denote By the matching irG induced by a coloring
of G, the entropy of this coloring with respectfas

f(PX)+ > f(PX)+P(y))
xgV (M) xyeE(M)

= > f(P(x))+<
xeV(G) XyeE(M)

=HX)+ Y p(e),
ecE(M)

F(PX) +P(y)) = F(P(x)) — f(P(Y))>

whereX ~ P(x) andp(xy) = f(P(x) +P(y)) — f(P(x)) — f(P(y)). Hence finding
a minimum entropy coloring amounts to finding a maximum weigiatching
in G, each edge of which has nonnegative weightp(e). This can be done in
O(|V(G)||E(G)| + [V(G)|?log |V (G)|) time [Gabow, 1990]. o

4 Chromatic vs. Kdrner entropy

We first give a definition of a quantity introduced by Korn&®73] that is often
referred to as graph entropy. Following Alon and Orlitsk9986] and to avoid
ambiguities, we call it Korner entropy.

The Korner entropy H (G, P) of a probabilistic grapiG, P) can be defined
by

H«(G,P) ae%ge) XEVZ(G) P(x)logay, (1)

where STARG) is the stable set polytope &, defined inRV(®) as the convex
hull of the characteristic vectors of the stable set&offhe Korner entropy has
a number of applications, the most prominent being the prakbf sorting with
partial information studied by Kahn and Kim [1995] in the@#lebrated paper. See
Simonyi [2001] for a survey on Korner entropy.

We also definex (G, P) which is simply the maximum weigh®(S) of a stable
setSof (G, P).

Lemma 4 For any probabilistic graph(G, P), we have

~l0ga(G,P) < Hy(G,P) < Hy(G,P) < logX(G).



Proof The last inequality comes from the fact that in the worst cteedistribu-
tion of the colors in a minimum cardinality coloring is unifo, hence its entropy
is at most log((G). The second inequality is proved in Alon and Orlitsky [1996]
We here give a shorter proof based on (1). Consider a mininmirogy coloring
@ of (G,P), and leta, = P(¢~(¢(x)) for each vertex € V(G). Since each color
class ofg is a stable set and the probability masses of the color dassa up to
one, the vectoa is a convex combination of characteristic vectors of stabls,
hence we havea € STAB(G). Furthermore we can check that for this valueaof
we have

- Z( )P(X)Iogax = - Z( )P(X)IOQP(fP’l(fP(X))) )
xeV(G xeV (G

= — 5 P(¢ (i) logP(¢ (i) 3

= Hx(G,P), (4)

thus the minimum definingl, (G, P) is at mostH, (G, P).

The first inequality is derived as follows. Late STAB(G). A stable set has
weight at mosio (G, P), so we havey oy () P(X)ax < a(G,P). Combining this
with the concavity ok — log(x) yields

- z P(x)logax > —log z P(X)ax > —loga (G,P).
xeV(G) XeV(G)

O

The bounds on the chromatic entropy given in Lemma 4 can bepuotad
in polynomial time only for certain classes of probabitisgiraphs. In particular,
whenG is a perfect graph, the two lower bounds can be computed {tdixed
accuracy) in polynomial time, as follows from Grotschebvsz, and Schrijver
[1993]. The chromatic number can also be computed in polyaltime on these
graphs.

In the next two propositions we study how good the Kornerapyt is as a
lower bound on the chromatic entropy.

Proposition 1 The ratio H,(G,P)/Hk (G, P) can be arbitrarily large.

Proof Let Gy, be the graph consisting of a matching of size1 and lete = 1/r?.
Choose an edgey € E(Gy,) and letPR, be the probability distribution such that
Pi(X)=(1—ne)(1—¢),Pi(y) = (1—ne)e andP(z) = /2 forze V(Gy), Z# X, Y.

Defineh(p) : (0,1) — R as the functiorp — —plogp — (1 — p)log(1— p).
The chromatic and Korner entropy Gf, are easily obtained:

Hi (Gn, Ph) =ne + (1—ne)h(e).
Now, it can be checked that

jim x(Co PO
N—00 HK(GmPn)
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Fig. 2 The graphGs(3).

The above proof does not show that the differeHgeG, P) — Hi (G, P) is not
bounded. We now prove this in the next proposition.

Proposition 2 The difference K(G,P) — H« (G, P) can be arbitrarily large, even
if G is chordal and P is the uniform distribution.

In order to prove this result, we define a gra@fin) (n > 2,k > 1) inductively
onk. The graphG; (n) is the single vertex grapks, and fork > 2 the graptGy(n)
is obtained as follows:

— start with the complete gragfy 1 onnk~* vertices,

— partition its vertex se¥ (K x-1) in nsetsVy, Vs, ..., V, of equal sizes,

— for each seV, (1 <i < k) add a disjoint copy o6_1(n) and all edges with
one endpoint ifv; and the other in the vertex set of theh copy ofGy_1(n).

A drawing of the graptGs(3) is given in Figure 2. It can easily be checked
thatGg(n) is chordal, that is, it contains no induced cycle of lengtigler than 3.
We study in the next two lemmas the behavioHpf Gk (n),U) andHy (Gy(n),U)
whenk is fixed andn goes to infinity, wher&J is the uniform distribution. Note
thatGy(n) hasknk~! vertices in total, o we havg(x) = Wl,l for all verticesx.

Lemma 5 Hg(Gk(n),U) < (k;zl)lognJro(l).

Proof We first associate to each vertex@f(n) alevelbetween 1 andét: the only
vertex of G1(n) has level 1, and fok > 2 the level of a vertex is eitherk if it
belongs to theentral clique Kk-1 arising in the definition oGy (n) above, or its
level in thei-th copy of the grapltk_1(n).

Now consider the poira &f RY(C«(") defined by

. (ni 1)k7i

K=

wherei denotes the level of vertex As chordal graphs are perfect, it follows from
a classical theorem of Chvatal [1975] that STAR(n)) is described by the trivial
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inequalitiesa, > 0 for all x € V(Gk(n)), and the clique inequaliti€g, x ax < 1

for all cliquesK of G¢(n). Using this, it can be checked that"STAB(Gk(n))
(for instance, by induction oR). This point yields the desired upper bound on
H (Gk(n),U):

Hk(Gk(n),U) < TRk L

The first equality above holds because each lev&,gh) contains exactlyk1
vertices. O

Lemma 6 Hy(Gk(n),U) > logk+ @ logn—o(1).
Proof We first note that the unique maximum clique@f(n) is its central clique
K1, implying that (Gk(n)) = n*~* as chordal graphs are perfect.

Let c be a maximal color-feasible sequence(@k(n),U). We prove the fol-
lowing by induction ork:

(ni 1)k71
knk-1 7

(n_ 1)k—i
krk-1

This is clearly true fok = 1. From now on, we assunke> 2. Becausg (Gk(n)) =
"1, we havecj > & for j € {f*"2+1,...,n*"1}. Thus the case=k in (5)
is settled. Now decomposeasc = c® + ¢t + - -- + ¢ wherec? counts the prob-
ability masses coming from the central clique and. .., c" count those coming
from then copies ofGy_1(n) for each color class. Let' (1 <1 < n) denote the
sequence’ with all zero entries removed, except the trailing zeroescdisec
is maximal, the sequencé”—ld' is a maximal color-feasible sequenceGf 1(n)
for all I. Moreover, the maximality of and the structure dBy(n) imply that at
most one of then components:-l,...,c’j1 is zero for anyj between 1 anak—2.
Indeed, a stable set @(n) either contains no vertex of the central clique and
is thus composed af stable sets coming from each of theopies ofGy_1(n),
or includes exactly one vertex of the central clique, sagnd is thus composed
of x andn— 1 stable sets coming from— 1 copies ofGx_1(n) (that is, all the
copies except the one which is totally adjacenk}oln particular, if two of the
n components?, .. .,c? equalled zero we would be able to switch the entdjes
and c'j, for somel and somej’ > j such thatc} = 0 andc'j, > 0, while keeping
a color-feasible sequencecontradicting the maximality of. Let| € {1,...,n}.

C1 >

cj >

j for2<i<kandn?+1<j<nl (5)
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Becauseal' is maximal color-feasible, it is nonincreasing. Sco:'jif7é 0, we have

c; > di. From the induction hypothesis applieddoand the latter observations,
we infer the following inequalities:

—1 k-2 —1 k-1
¢ > (n—-1) (nkrf()—l = (nkrf()—l
¢ > (n—1) m‘éf&'*l = (”k‘rﬁk;' for2<i<k—1landn24+1<j<n-l

Let C be the sequence such ttet= 0 for j > nk-1, Cj is the minimum possible
value ofc;j allowed by (5) for 2< j < n“landé; =1— Y i>2Cj. As is easily
verified,€ dominates. Using Lemma 2 we get

Hy (Gk(n),U) > H(C) = logk+ (k;zl) logn—o0(1).

O

Proposition 2 follows from Lemmas 5 and 6. Before turninghte hext section,
we mention that we can show that Proposition 2 also holds v&eman interval
graph andP is arbitrary by adapting the construction used above.

5 Number of Colors

We consider in this section the number of colors used in aimim entropy color-
ing. We denote by (G, P) the minimum number of colors in a minimum entropy
coloring of the probabilistic graptiG, P). We mention that the upper bounds on
the number of colors used in a minimum entropy coloring giethis section
hold for all minimum entropy colorings whenever we ha) > 0 for all ver-
ticesx.

We first relate minimum entropy colorings to another kind ofocings stud-
ied in the literature. AGrundy coloringof a graph is a coloring such that for any
colori, if a vertex has colorthen it is adjacent to at least one vertex of cgldor
all j <i. TheGrundy number (G), also called thdirst-fit online coloring num-
ber [Pemmaraju, Raman, and Varadarajan, 2004], of a géaphthe maximum
number of colors in a Grundy coloring &. See Erdos, Hedetniemi, Laskar, and
Prins [2003] for a recent survey of this topic. Equivalen@yundy colorings are
colorings that can be obtained by iteratively removing mreatistable sets.

Proposition 3 Any minimum entropy coloring of a graph G equipped with a prob
ability distribution on its vertices is a Grundy coloring.dveover, for any Grundy
coloring @ of G, there exists a probability mass function P ové6Y such thatp

is the unique minimum entropy coloring (@, P).

Proof The first part of the claim is given by Lemma 3. We prove the sdquart

by induction on the numbérof colors used imp. It is trivially true fork =1, since

in that casés has no edge and the unigue minimum entropy coloring witheetsp

to any positive distributiof® assigns the same color to every vertex. Now assume
that the proposition holds for colorings with less tharolors. We leS= ¢~1(1)
andG' be the subgraph induced B(G) \ S By the induction hypothesis, there
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exists a distributiod?’ such thatp restricted taG’ is the unique minimum entropy
coloring of (G, P').

We define a probability distributioR for G as follows. For eack € V(G) we
setP(x) = P'(x)/t if xe V\ SandP(x) = (1—1/t)/|S otherwise. The entropy of
@ with respect td® equals

—(1-1/t)log(1-1/t) - ZZ (P'(@*()/t)log (P'(¢™1(1))/1).

i=

We first show that it is large enough, then any minimum entropy coloriing
of (G, P) assigns the same color to verticesSiindeed, assume that vertices3n
do not all have the same color under coloriigThe maximum probabilitfmax
of a color class iny then satisfies

Prax<1—(1-1/t)/[§= (9 -1+1/)/|5.

Furthermore, the entropy @ with respect tdP is at least

— 10gPax > log(IS//(IS] — 1+ 1/1))..

As t tends to infinity, the difference between this lower boundfmentropy of
@ and the entropy op tends to lod|S|/(|S — 1)). Thusy cannot have minimum
entropy ift is large enough.

Thus, assuming large enoughSis a color class ofy (recall that the stable
setSis maximal inG). The entropy of any such coloringg can be written as
H’/t 4+ h(1/t), whereH’ denotes the entropy with respectRbof the restriction
of Y to G, andh(1/t) is the entropy of a Bernoulli random variable with parameter
1/t. This shows that minimizing the entropy of any colorifigassigning the same
color to all vertices ofSamounts to minimizing the entropy of the same coloring
restricted to{G’, P’). Now it follows from the induction hypothesis theitand ¢
have the same color classes, which concludes the proof. a

It is not difficult to see that the Grundy number of a tree caraligtrarily
large: start for instance with any tr@eand attach a new vertekto each vertex
of T. Then the resulting tree has a Grundy number strictly lattgen T, since the
set of new vertices is a maximal stable set. It follows by thexjpus proposition
that xu (T,P) can also be arbitrarily large, whefeis a tree. We note that this
observation can be strengthened to the cade whiform, as shown in Cardinal
et al. [2004].

Proposition 4 (Cardinal et al., 2004)xy (G, P) is not bounded by any function
of x(G), even if P is uniform and G is a tree.

We now consider upper bounds gn (G, P) in terms of the maximum degree
A(G) of a vertex inG. We first note the following easy lemma, which was already
noted in Cardinal et al. [2004].

Lemma 7 (Cardinal et al., 2004)For any probabilistic graph(G, P), we have



14

Brooks [1941] showed a classical result stating th& i§ a connected graph
different from a complete graph or an odd cycle, thg) < A(G), whereA (G)
is the maximum degree of a vertex@ There are graphs other than those cited
above that have a Grundy coloring usifa¢G) + 1 colors, thus by Proposition 3 we
cannot extend Brooks’ theorem by substitutjpg G, P) to x(G) without making
any assumption oR. In the next theorem we prove that such an extension holds
whenP is the uniform distribution.

Theorem 4 If G is a connected graph different from a complete graph oodd
cycle, thernxy (G,U) < A(G), where U is the uniform distribution over(@).

Proof The proof closely follows the one given in Diestel [2000] finooks’ the-
orem. We borrow the path notation in whigRyis a path between verticasand

y, andx means that vertexis not included. The considered path should be clear
from the context. For simplicity, we use the shorthand nioie®(i) = P(¢(i))

for a colori.

LetA = A(G) andn=|G|. If A <2, eitherG is an odd cycle and we have
nothing to show, oG is a path or an even cycle and the proposition is trivial.
Hence we assumt > 3. Let us consider a minimum entropy coloripef (G,U)
with colors in the sef1,2,...,A +1}. We show that if thel + 1 colors are used,
theng cannot have minimum entropy with respecttpunlessG is the complete
graph.

Without loss of generality, we consider that cafb# 1 has minimum weight:
for all 1 <i < A, we haveP(i) > P(A +1). Let us choose a vertexe V(G)
such thatp(x) = A + 1. The vertexx must be adjacent t4 vertices colored with
colors 1 toA, otherwise it could be recolored and, from Lemmaplyould not
have minimum entropy. We denote lythe vertex adjacent ta and such that
¢(x;) = i. Let F be defined as the graph induced by the vertices colored with
colors{1,2,...,A}, F; as the graph induced dn by the vertices colored with
colorsi or j, andGCj; (respectivelyCji) as the component df j containingx
(respectivelyk;).

We first show the following:
Gij is a path. (6)

First, x; must have a single neighbor @;. Otherwise, it could be recolored,
with a colork different ofi and j andx could in turn be recolored with colar
The probability mas®(A + 1) would decrease by/h, andP(k) would increase
by 1/n. From Lemma 1 and the fact thB{A + 1) < P(k), the entropy would
decrease, ang would not be optimal.

Let us assume th&}; is not a path. Then there must be an inner verteg; pf
having three identically colored neighbors. Let us defiaes the first such vertex
on the path fronx; in Gjj. The vertexy can be recolored with a coldrdifferent
fromi or j, since its neighbors cannot have more tian 2 distinct colors. We
can then perform the following steps:

1. recolory with colork,
2. interchange colorisand j on the pathgPy,
3. recolorx with colori.
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We show that they can only decrease the entropy, and thertifatg cannot be
optimal unlessC;j is a path. We have to consider two cases: eitpgy) = i or
oy) = .

If (y) =1, then the pathx;Py is even. Interchanging the coldrandj on this
path does not change the probability magagsandP(j). The probabilityP(i) is
decreased by/h wheny is recolored, but increased byriwhenx is recolored.
Hence the overall sequence of changes leaves the propdilit unchanged,
while P(A + 1) is decreased by/h, andP(K) is increased by An. SinceP(A +
1) <P(k), we have the conditions of Lemma 1 and the entropy can onlsedse.

If (y) = j, then the patlx; Py is odd. Interchanging coloisand j on this path
decreaseB(i) by 1/n and increaseB(j) by 1/n. Recoloringy decreaseB(j) by
1/n and recoloringx increase$(i) by 1/n. So the probability massdi) and
P(j) are left unchanged by the operations. Overall, we only haatP(A + 1) is
decreased by /h, andP(k) is increased by An. Again, Lemma 1 holds and the
entropy decreases.

Cij =C;ji is ax —x; path. @)

To show this, we assume th@} andC;j; are disjoint components & ;. Then
we can interchange colorsind j in C; and recolox with colori. We again have
two cases: eithe;j is an even path, anél(A +- 1) is decreased by/h andP(i) is
increased by An, orC;; is an odd path, anBl(A + 1) is decreased by/h andP( )
is increased by /n. In both cases, Lemma 1 holds and the entropy decreases.

Notice that (7) implies that th€;;'s are even paths.

For distincti, j, k we haveCij N"Cjx = {xj }. (8)

Otherwise there would be a vertex# y € Cjj NCjk with ¢(y) = j and two
pairs of neighbors colored wifrandk respectively. We could then apply the same
three steps as in the proof of point (6).

Now if the neighborsx; of x are pairwise adjacent, thea can only be the
graph induced by and {xq,%2,...,Xa}, because all vertices have maximum
degreeA. HenceG is the complete graph, and we do not have to show anything.

We may thus assume without loss of generality that ¢ E(G). Lety be the
neighbor ofx; in Cy2, with ¢(y) = 2. Interchanging colors 1 and 3@j3 we obtain
a new coloringy’ of G. This coloring has the same entropy@ssinceC;3 is an
even path. We defing andCj; with respect to the new coloring. As a neighbor
of X, = x5, the vertexy now lies inC,,, for ¢(y) = ¢/(y) = 2. By (8), however, the
pathx;Cy> retained its original coloring, spe X1Ci» C Ci,. Hencey € C,3NCy,,
contradicting (8). ad
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