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Abstract

In the minimum entropy set cover problem, one is given a collection of
k sets which collectively cover ann-element ground set. A feasible solution
of the problem is a partition of the ground set into parts suchthat each part
is included in some of thek given sets. Such a partition defines a probability
distribution, obtained by dividing each part size byn. The goal is to find a
feasible solution minimizing the (binary) entropy of the corresponding dis-
tribution. Halperin and Karp have recently proved that the greedy algorithm
always returns a solution whose cost is at most the optimum plus a constant.
We improve their result by showing that the greedy algorithmapproximates
the minimum entropy set cover problem within an additive error of 1 nat
= log2e bits ≃ 1.4427 bits. Moreover, inspired by recent work by Feige,
Lovász and Tetali on the minimum sum set cover problem, we prove that no
polynomial-time algorithm can achieve a better constant, unless P= NP. We
also discuss some consequences for the related minimum entropy coloring
problem.

1 Introduction

Let V be ann-element ground set andS = {S1, . . . ,Sk} be a collection of subsets
of V whose union isV. A cover is an assignmentf : V → S of each point ofV to
a set ofS such thatv∈ f (v) for all v∈V. For eachi = 1, . . . ,k, we letqi = qi( f )
denote the fraction of points assigned byf to thei-th set ofS , i.e.,

qi :=
| f−1(Si)|

n
. (1)
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Theminimum entropy set cover problem(MESC) asks to find a coverf minimiz-
ing the entropy of the distribution(q1, . . . ,qk). Letting ENT( f ) denote this latter
quantity, we have

ENT( f ) := −
k

∑
i=1

qi logqi . (2)

Note that, throughout, all logarithms are to base 2. Note also that, for definiteness,
we setxlogx = 0 whenx = 0.

The minimum entropy set cover problem is an NP-hard variant of the classical
minimum cardinality set cover problem. Its recent introduction by Halperin and
Karp [8] was motivated by various applications in computational biology. The
problem is closely related to the minimum entropy coloring problem, which itself
originates from the problem of source coding with side information in information
theory, see Alon and Orlitsky [1].

The well-known greedy algorithm readily applies to MESC. Ititeratively as-
signs to some set ofS all unassigned points in that set, until all points are assigned.
In each iteration, the algorithm chooses a set that containsa maximum number of
unassigned points. Halperin and Karp [8] studied the performance of the greedy
algorithm for MESC. They proved that the entropy of the coverreturned by the
algorithm is at most the optimum plus some constant1. Approximations within an
additive error are considered because the entropy is a logarithmic measure. In the
case of MESC, the optimum value always lies between 0 and logn.

In this paper, we revisit the greedy algorithm and give a simple proof that it
approximates MESC within 1nat, that is, loge≃ 1.4427 bits. We then show that
the problem is NP-hard to approximate to within(1− ε) loge for all positive ε .
At the end of the paper, we discuss some consequences for the minimum entropy
coloring problem.

At first sight, it might seem surprising that MESC can be approximated so well
whereas its father problem, the minimum cardinality set cover problem, is noto-
riously difficult to approximate, see Feige [3]. We concludethe introduction by
offering an intuitive explanation to this phenomenon. A consequential difference
between the two problems is the penalty incurred for using too many sets. A min-
imum entropy cover is allowed to use a lot more sets than a minimum cardinality
cover, provided the parts of these extra sets are small.

The same phenomenon also appears when one compares the minimum cardi-
nality set cover problem to theminimum sum set cover problem(MSSC), see Feige,
Lovász and Tetali [5]. The approximability status of the latter problem is similar

1They claim that the greedy algorithm gives a 3 bits approximation (which is correct). How-
ever, their proof is flawed (e.g., see their Lemma 6). A straightforward fix gives an approximation
guarantee of 3+2loge≃ 5.8854 bits.
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to that of MESC: the greedy algorithm approximates it withina factor of 4 and
achieving a factor of 4− ε is NP-hard, for all positiveε . Furthermore, the tech-
niques used here for proving the corresponding results on MESC are comparable
to the ones used in [5] for MSSC, especially for the inapproximability result.

2 Analysis of the Greedy Algorithm

We begin this section by exhibiting a family of instances on which the greedy algo-
rithm perfoms poorly, namely, returns a solution whose costexceeds the optimum
by roughly loge bits. Below, we use the following bounds on the factorial. These
bounds are implied by the more precise bounds given, e.g., in[6].

Lemma 1. For any positive integerℓ, we have
(

ℓ

e

)ℓ

< ℓ! < 2
√

2πℓ

(

ℓ

e

)ℓ

.

Let ℓ be a positive integer. We let the points ofV be the cells of aℓ×ℓ! array and
S be the union of two collectionsScol andSline each of which partitionsV. The
sets inScol are theℓ! columns of the array. For eachi = 1, . . . , ℓ, collectionSline

containsℓ!/i sets of sizei which partition thei-th line of the array. An illustration
is given in Figure 1. (While in the figure each set ofSline consists of contiguous
cells, we do not require this in general.) Each of the collections Scol andSline

directly yields a feasible solution for MESC, which we denote respectively byfcol

and fline. Clearly, fline is one of the possible outcomes of the greedy algorithm
(sets are produced from bottom to top on Figure 1).

Figure 1: The sets formingSline

The respective costs offcol and fline are as follows:

ENT( fcol) = −
ℓ!

∑
j=1

1
ℓ!

log
1
ℓ!

= logℓ!,

ENT( fline) = −
ℓ

∑
i=1

ℓ!
i

i
ℓ · ℓ! log

i
ℓ · ℓ! = logℓ+ logℓ! − 1

ℓ
logℓ!.
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By the second inequality of Lemma 1, we then have

ENT( fline) ≥ logℓ+ logℓ! − 1
ℓ

log
[

2
√

2πℓ
(ℓ

e

)ℓ]
= ENT( fcol)+ loge−o(1).

This implies that the cost offline is at least the optimum plus loge−o(1). We now
show that the previous instances are essentially the worst for the greedy algorithm.
Because the two formulations of MESC given above are equivalent to each other,
we can regard a coverf as a partition of the ground set. Accordingly, we refer to
the setsf−1(Si) as thepartsof f .

Theorem 1. Let fOPT and fG be a cover of minimum entropy and a cover returned
by the greedy algorithm, respectively. Then we have ENT( fG) ≤ ENT( fOPT) +
loge.

Proof. For i = 1, . . . ,k, we let Xi denote thei-th part of fOPT andxi = |Xi|. For
v ∈ V, we let av be the size of the part offG containingv. We claim that the
following holds for allv and alli:

∏
v∈Xi

av ≥ xi !. (3)

Let us consider the points ofXi in the order in which they were assigned to sets of
S by the greedy algorithm, breaking ties arbitrarily. Consider the j-th element of
Xi assigned, sayv. In the iteration whenv was assigned, the greedy algorithm could
have picked setSi . Because at that time at mostj −1 points ofXi were assigned,
at leastxi − j + 1 points ofSi were unassigned, and we haveav ≥ xi − j + 1. This
implies the claim.

We now rewrite the entropy offG as follows:

ENT( fG) = −1
n ∑

v∈V

log
av

n
= −1

n

k

∑
i=1

∑
v∈Xi

log
av

n
= −1

n

k

∑
i=1

log ∏
v∈Xi

av

n
.

By Inequality (3) and the first inequality of Lemma 1, we then have:

ENT( fG) ≤−1
n

k

∑
i=1

log
xi !
nxi

≤−1
n

k

∑
i=1

log
xxi

i

nxi exi
≤ ENT( fOPT)+ loge.

Finally, we mention that MESC has a natural weighted versionin which each
point v ∈ V has some associated probabilitypv. Again, we can associate to each
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cover f a probability distribution(q1, . . . ,qk). This time, we letqi denote the prob-
ability that a random point is assigned toSi by f , that is,

qi := ∑
v∈ f−1(Si)

pv.

The goal is then to minimize (2), just as in the unweighted version. The greedy
algorithm easily transposes to the weighted case, and so does our analysis. This is
easily seen when the probabilities are rational. Indeed, let K be a positive integer
such thatKpv is integral for all pointsv. Now replicate each point in the ground set
Kpv−1 times. Thus we obtain an unweighted instance which is equivalent to the
original weighted instance, in the following sense. The optimum values of the two
instances are equal (Lemma 2, given below, forbids replicated versions of a point
to be assigned to different sets) and the behavior of the greedy algorithm on the
new instance is identical to its behavior on the original instance. The case of real
probabilities follows by a continuity argument.

3 Hardness of Approximation

Before turning to the main theorem of this section, we state alemma which helps
deriving good lower bounds on the optimum. Letq = (qi) and r = (r i) be two
probability distributions overN+. If ∑ℓ

i=1 r i ≥ ∑ℓ
i=1qi holds for allℓ, we say that

q is dominatedby r. The lemma tells us that in such a case, the entropy ofq is at
least that ofr, provided thatq is non-increasing (see, e.g., [9] for a proof).

Lemma 2. Let q= (qi) and r= (r i) be two probability distributions overN+ with
finite support. Assume that q is non-increasing, that is, qi ≥ qi+1 for i ≥ 1. If q is
dominated by r, then we have ENT(q) ≥ ENT(r).

We now prove that no polynomial-time algorithm for MESC can achieve a
better constant approximation guarantee than the greedy algorithm, unless P= NP.
Halperin and Karp [8] gave a polynomial time approximation scheme (PTAS) for
the problem. Our result does not contradict theirs since thePTAS they designed is
multiplicative, i.e., returns a solution whose cost is most(1−ε) times the optimum.

Theorem 2. For everyε > 0, it is NP-hard to approximate the minimum entropy
set cover problem within an additive term of(1− ε) loge. This remains true on
instances such that every point is in the same number of sets and every set has the
same size.

Proof. A 3SAT-6 formulais a CNF formula in which every clause contains exactly
three literals, every literal appears in exactly three clauses, and a variable appears
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at most once in each clause. Such a formula is said to beδ -satisfiableif at most
a δ -fraction of its clauses are satisfiable. It is known that distinguishing between
a satisfiable 3SAT-6 formula and one which isδ -satisfiable is NP-hard for some
δ with 0 < δ < 1, see Feige et al. [5]. In the latter reference, the authors slightly
modified a reduction due to Feige [3] to design a polynomial-time reduction asso-
ciating to any 3SAT-6 formulaϕ a corresponding set systemS(ϕ) = (V,S ). They
used the new reduction to prove that the minimum sum set coverproblem is NP-
hard to approximate to within 2− ε on uniform regular hypergraphs (see Theorem
12 in that paper). For any given constantsc > 0 andλ > 0, it is possible to set the
values of the parameters of the reduction in such a way that:

• the sets ofS have all the same sizen/t, wheren denotes the number of
points inV, and every point ofV is contained in the same number of sets;

• if ϕ is satisfiable, thenV can be covered byt disjoint sets ofS ;

• if ϕ is δ -satisfiable, then everyi sets chosen fromS cover at most a 1−
(1−1/t)i + λ fraction of the points ofV, for 1≤ i ≤ ct.

Suppose from now on thatϕ is a 3SAT-6 formula which is either satifiable orδ -
satisfiable, and denote byfOPT an optimal solution of MESC with inputS(ϕ). For
1≤ i ≤ k, let qi = qi( fOPT) be defined as in (1). Fori > k, we letqi = 0. Letting
q denote the sequence(qi), we assume without loss of generality thatq is non-
increasing.

If ϕ is satisfiable, then it follows from Lemma 2 that the optimal solution con-
sists in coveringV with t disjoint sets. Hence, ENT( fOPT) = ENT(q) = logt in
this case. Assume now thatϕ is δ -satisfiable. Letα = ε/2, λ = α2/2−α3/6 and
c = − lnλ .

Claim 1. The following lower bound on the optimum holds:

ENT(q) ≥ logt +(1− ε/2) loge+o(1),

where o(1) tends to zero when t tends to infinity.

Claim 1 implies that any algorithm approximating MESC within an additive
term of(1− ε) logecan be used to decide whetherϕ is satisfiable orδ -satisfiable.
Indeed, as noted in [5],t may be assumed to be larger than any fixed constant. The
theorem then follows.
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In order to prove the claim, we define a sequencer = (r i) as follows (see Fig-
ure 2 for an illustration):

r i =















1/t for 1≤ i ≤ ⌈αt⌉,
(1−1/t)i−1/t for ⌈αt⌉+1≤ i ≤ ⌊c̃t⌋,
1−∑⌊c̃t⌋

i=1 r i for i = ⌊c̃t⌋+1,
0 otherwise,

wherec̃ is a real such that

⌈αt⌉
t

+(1−1/t)⌈αt⌉− (1−1/t)c̃t = 1. (4)

By our choice of parameters, we can assume⌈αt⌉+ 1 ≤ ⌊c̃t⌋ by lowering ε if
necessary. From the definition of ˜c we have

⌊c̃t⌋

∑
i=1

r i =
⌈αt⌉

t
+(1−1/t)⌈αt⌉− (1−1/t)⌊c̃t⌋ ≤ 1.

Therefore, the sequencer is a probability distribution overN+.

Figure 2: The shape of distributionr = (r i) for t = 20 andε = 1/2

By the properties ofS(ϕ) we have

ℓ

∑
i=1

qi ≤ ℓ/t and
ℓ

∑
i=1

qi ≤ 1− (1−1/t)ℓ + λ (5)

for 1≤ ℓ ≤ ⌊ct⌋, and it can be checked that ˜c≤ c for t large enough.

Claim 2. Sequence q is dominated by sequence r, that is, for allℓ we have

ℓ

∑
i=1

qi ≤
ℓ

∑
i=1

r i . (6)
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For 1≤ ℓ ≤ ⌈αt⌉, Inequality (6) readily follows from the definition ofr and
Equation (5). Notice that we have

1− (1−1/t)⌈αt⌉ + λ ≤ 1− (1−α + α2/2−α3/6)+ λ = α ≤ ⌈αt⌉/t (7)

whenevert is large enough. Hence, for⌈αt⌉+ 1 ≤ ℓ ≤ ⌊c̃t⌋, from Equations (5)
and (7) we derive

ℓ

∑
i=1

qi ≤ 1− (1−1/t)ℓ + λ = 1− (1−1/t)⌈αt⌉ + λ +
ℓ

∑
i=⌈αt⌉+1

(1−1/t)i−1/t

≤ ⌈αt⌉/t +
ℓ

∑
i=⌈αt⌉+1

(1−1/t)i−1/t =
ℓ

∑
i=1

r i .

Finally, note that (6) is also true forℓ > ⌊c̃t⌋, as theqi ’s andr i ’s both sum up to 1. It
follows thatq is dominated byr. In other words, Claim 2 holds true. By Lemma 2,
we have ENT(q) ≥ ENT(r). In order to show Claim 1, it then suffices to prove the
following claim.

Claim 3. We have ENT(r) ≥ logt +(1− ε/2) loge+o(1).

The entropy ofr can be expressed as follows:

ENT(r) = −
⌊c̃t⌋+1

∑
i=1

r i logr i = −
⌊c̃t⌋

∑
i=1

r i logr i +o(1)

=
⌈αt⌉

t
logt −

⌊c̃t⌋

∑
i=⌈αt⌉+1

(1−1/t)i−1

t
log

(1−1/t)i−1

t
+o(1)

= α logt +
1
t

log
t

t −1

⌊c̃t⌋

∑
i=⌈αt⌉+1

(i −1)(1−1/t)i−1

+
1
t

logt
⌊c̃t⌋

∑
i=⌈αt⌉+1

(1−1/t)i−1 +o(1).

Let β := limt→∞ c̃. In the sum above, the second and third terms are asymptotically
equal to respectively loge·((1+α)e−α −(1+β )e−β ) and logt ·(e−α −e−β ). This
is shown in Lemmas 3 and 4 in the appendix. It follows from Equation (4) that

β = − ln(α +e−α −1).
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In virtue of this equation and by what precedes, we can rewrite the entropy ofr as

ENT(r) = α logt + loge· ((1+ α)e−α − (1+ β )e−β )+ logt · (e−α −e−β )+o(1)

= (α +e−α −e−β ) logt +((1+ α)e−α − (1+ β )e−β ) loge+o(1)

= logt +((1+ α)e−α − (1+ β )e−β ) loge+o(1).

By Lemma 5 (see the appendix), we know thatαe−α −βe−β is nonnegative pro-
videdε is sufficiently small. Claim 3 follows then by noticing

(1+ α)e−α − (1+ β )e−β = 1−α + αe−α −βe−β ≥ 1−α = 1− ε/2.

Hence, Claim 1 and the theorem follow.

4 Graph Colorings with Minimum Entropy

There are situations where the collection of setsS = {S1, . . . ,Sk} input to the min-
imum entropy set cover problem is given implicitly. One possibility, which is the
focus of this section, is to defineS as the collection of all inclusion-wise maxi-
mal stable sets of some (simple, undirected) graphG = (V,E). The corresponding
variant of MESC is known as theminimum entropy coloring problem(MEC). It
stems from information theory, having applications in zero-error coding with side
information [1]. Notice that, by our choice ofS , every coverf can be regarded as
a (proper) coloring of the graphG.

The results of Section 2 directly apply to MEC. The greedy algorithm, trans-
posed to the setting of MEC, constructs a coloring ofG by iteratively removing a
maximum size stable set fromG. Of course, its running time can no longer be guar-
anteed to be polynomial, unless P = NP. Theorem 1 implies the following result,
which again holds in the weighted case.

Corollary 1. Let fOPT and fG be a coloring of G with minimum entropy and a
coloring returned by the greedy algorithm, respectively. Then we have ENT( fG)≤
ENT( fOPT)+ loge.

The bound given in Corollary 1 is asymptotically tight because the bad MESC
instances described in the beginning of Section 2 can be easily turned into MEC
instances. Indeed, for a givenℓ, it suffices to consider the graphG obtained from
the complete graph onV by removing every edge which is entirely included in
some set ofScol or Sline.

Clearly, the greedy algorithm runs in polynomial time when restricted to graphs
in which a maximum weight stable set can be found in polynomial time. This in-
cludes perfect graphs [7] and claw-free graphs [10]. So MEC can be approximated
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within an additive term of logeon such graphs, in polynomial time. In contrast, for
arbitrary graphs it is known that for anyε > 0 there is no polynomial-time approxi-
mation algorithm whose additive error is bounded by(1− ε) logn unless ZPP=NP.
This was proved by the authors in [2] using as a black-box an inapproximability
result for the minimum cardinality coloring problem due to Feige and Kilian [4].
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Appendix

Lemma 3. If α , β andc̃ are defined as in the proof of Theorem 2, we have

1
t

log
t

t −1

⌊c̃t⌋

∑
i=⌈αt⌉+1

(i −1)(1−1/t)i−1 = loge· ((1+ α)e−α − (1+ β )e−β )+o(1).

Proof. For any positive integerℓ, we have

ℓ

∑
i=1

(i −1)(1−1/t)i−1 =
ℓ

∑
i=1

i(1−1/t)i−1−
ℓ

∑
i=1

(1−1/t)i−1

= t2(1− 1
t
(ℓ+1)(1−1/t)ℓ − (1−1/t)ℓ+1)

− t(1− (1−1/t)ℓ)

= t2(1− (1+ ℓ/t)(1−1/t)ℓ
)

− t(1− (1−1/t)ℓ).

It follows that we have

1
t

log
t

t −1

⌊c̃t⌋

∑
i=⌈αt⌉+1

(i −1)(1−1/t)i−1

=
1
t

log
t

t −1

[

t2(1− (1+ ⌊c̃t⌋/t)(1−1/t)⌊c̃t⌋)− t(1− (1−1/t)⌊c̃t⌋)

− t2(1− (1+ ⌈αt⌉/t)(1−1/t)⌈αt⌉)+ t(1− (1−1/t)⌈αt⌉)
]

.

The right-hand side of the latter equation can be rewritten as:

t log
t

t −1

(

(1+ ⌈αt⌉/t)(1−1/t)⌈αt⌉− (1+ ⌊c̃t⌋/t)(1−1/t)⌊c̃t⌋)

+ log
t

t −1

(

(1−1/t)⌊c̃t⌋− (1−1/t)⌈αt⌉). (8)

Now, from c̃t−1≤ ⌊c̃t⌋ ≤ c̃t, we infer:

(1−1/t)c̃t ≤ (1−1/t)⌊c̃t⌋ ≤ (1−1/t)c̃t−1.

Because ˜ct = β t + o(t) and (1− 1/t)o(t) = 1+ o(1), the above upper and lower
bound on(1− 1/t)⌊c̃t⌋ are asymptotically equal toe−β . Hence, we have(1−
1/t)⌊c̃t⌋ = e−β + o(1). A similar argument shows(1− 1/t)⌈αt⌉ = e−α + o(1).
Hence, whent tends to∞, the first term of (8) tends to loge· ((1+ α)e−α − (1+
β )e−β ), and the second term tends to 0. The lemma follows.
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Lemma 4. With α , β andc̃ defined as in the proof of Theorem 2, we have

1
t

logt
⌊c̃t⌋

∑
i=⌈αt⌉+1

(1−1/t)i−1 = logt · (e−α −e−β )+o(1).

Proof. Because we have

⌊c̃t⌋

∑
i=⌈αt⌉+1

(1−1/t)i−1 = t((1−1/t)⌈αt⌉− (1−1/t)⌊c̃t⌋),

it suffices to prove the following equalities:

logt · ((1−1/t)⌈αt⌉−e−α) = o(1) and (9)

logt · ((1−1/t)⌊c̃t⌋−e−β ) = o(1). (10)

For all t, we have
e−1/t −1/2t2 ≤ 1−1/t ≤ e−1/t

and hence
(e−1/t −1/2t2)⌈αt⌉ ≤ (1−1/t)⌈αt⌉ ≤ e−⌈αt⌉/t . (11)

Using the Binomial theorem, we can bound the left-hand side of (11) as follows:

(e−1/t −1/2t2)⌈αt⌉ =
⌈αt⌉

∑
i=0

(⌈αt⌉
i

)

e−(⌈αt⌉−i)/t(−1/2t2)i

≥ e−⌈αt⌉/t +
⌈αt⌉

∑
i=0
iodd

(⌈αt⌉
i

)

e−(⌈αt⌉−i)/t(−1/2t2)i

≥ e−⌈αt⌉/t +
∞

∑
j=0

(αt +1)(αt)2 j(−1/2t2)2 j+1

≥ e−⌈αt⌉/t − (α/2t +1/2t2) · 1
1−α2/4t2 . (12)

Equations (11) and (12) together yield (recall thatt can be assumed to be large, so
logt is positive):

logt · (e−⌈αt⌉/t −e−α)− logt · (α/2t +1/2t2) · 1
1−α2/4t2

≤ logt · ((1−1/t)⌈αt⌉−e−α) ≤ logt · (e−⌈αt⌉/t −e−α). (13)

From the implications

αt ≤ ⌈αt⌉ ≤ αt +1⇒ α ≤ ⌈αt⌉/t ≤ α +1/t ⇒ e−α−1/t ≤ e−⌈αt⌉/t ≤ e−α ,
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we infer:
e−α logt · (e−1/t −1) ≤ logt · (e−⌈αt⌉/t −e−α) ≤ 0.

Since logt · (e−1/t −1) is asymptotically zero, both the upper and lower bound in
Equation (13) are asymptotically zero, and Equation (9) follows.

Finally, in order to prove that Equation (10) holds, we startfrom the following
bounds on(1−1/t)⌊c̃t⌋:

(1−1/t)c̃t ≤ (1−1/t)⌊c̃t⌋ ≤ (1−1/t)c̃t−1 =
t

t −1
(1−1/t)c̃t.

Note that we have(1−1/t)c̃t = ⌈αt⌉/t +(1−1/t)⌈αt⌉−1 by the definition of ˜c,
see Equation (4). Therefore, we can bound logt · ((1−1/t)⌊c̃t⌋−e−β ) as follows
(recall thate−β = α +e−α −1):

logt · (⌈αt⌉/t +(1−1/t)⌈αt⌉−α −e−α)

≤ logt · ((1−1/t)⌊c̃t⌋−e−β ) ≤

logt · t
t −1

(

⌈αt⌉/t +(1−1/t)⌈αt⌉−1− t −1
t

α − t −1
t

e−α +
t −1

t

)

.

By Equation (9), both bounds are asymptotically zero. Therefore Equation (10)
holds. This concludes the proof.

Lemma 5. Lettingα = α(ε) andβ = β (ε) be defined as in the proof of Theorem
2, we haveαe−α ≥ βe−β provided thatε is small enough.

Proof. Becauseβ = − ln(α +e−α −1), we have to show

αe−α ≥− ln(α +e−α −1) · (α +e−α −1). (14)

For all α , we have

α2

2
(1− α

3
) =

α2

2
− α3

6
≤ α +e−α −1≤ α2

2

and hence

−
(

ln
α2

2
+ ln(1− α

3
)
)

· α2

2
≥− ln(α +e−α −1) · (α +e−α −1).

Now, as can be readily checked, forε sufficiently small (recall thatα = ε/2), we
have

αe−α ≥ α
2
≥−

(

ln
α2

2
+ ln(1− α

3
)
)

· α2

2
.

The lemma follows.
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