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Abstract

In the minimum entropy set cover problem, one is given a ctibe of
k sets which collectively cover amelement ground set. A feasible solution
of the problem is a partition of the ground set into parts shel each part
is included in some of thke given sets. Such a partition defines a probability
distribution, obtained by dividing each part size layThe goal is to find a
feasible solution minimizing the (binary) entropy of the@sponding dis-
tribution. Halperin and Karp have recently proved that theegy algorithm
always returns a solution whose cost is at most the optimuigtonstant.
We improve their result by showing that the greedy algoriipproximates
the minimum entropy set cover problem within an additiveoewf 1 nat
= log, e bits ~ 1.4427 bits. Moreover, inspired by recent work by Feige,
Lovasz and Tetali on the minimum sum set cover problem, wegthat no
polynomial-time algorithm can achieve a better constamigss P= NP. We
also discuss some consequences for the related minimuwpgraoloring
problem.

1 Introduction

LetV be ann-element ground set and’ = {S;,...,S} be a collection of subsets
of V whose union i%/. A coveris an assignment : V — .& of each point ol to

a set of. such thav € f(v) forallve V. Foreach =1,... .k, we letq = q;(f)
denote the fraction of points assigned bio thei-th set of.7, i.e.,
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The minimum entropy set cover problgiESC) asks to find a covelr minimiz-
ing the entropy of the distributiof, ...,qk). Letting ENT{f) denote this latter
guantity, we have

k
ENT(f) := __ZiQi logg;. 2

Note that, throughout, all logarithms are to base 2. Note thlat, for definiteness,
we setxlogx = 0 whenx = 0.

The minimum entropy set cover problem is an NP-hard variétiteoclassical
minimum cardinality set cover problem. Its recent intraglut by Halperin and
Karp [8] was motivated by various applications in compuwtaail biology. The
problem is closely related to the minimum entropy colorimglgpem, which itself
originates from the problem of source coding with side infation in information
theory, see Alon and Orlitsky [1].

The well-known greedy algorithm readily applies to MESCitdtatively as-
signs to some set o all unassigned points in that set, until all points are amesig
In each iteration, the algorithm chooses a set that contamaximum number of
unassigned points. Halperin and Karp [8] studied the peréoice of the greedy
algorithm for MESC. They proved that the entropy of the cawturned by the
algorithm is at most the optimum plus some constaApproximations within an
additive error are considered because the entropy is aitlogéc measure. In the
case of MESC, the optimum value always lies between 0 andl log

In this paper, we revisit the greedy algorithm and give a &ngpoof that it
approximates MESC within fat, that is, loge ~ 1.4427 bits. We then show that
the problem is NP-hard to approximate to withiih— €)loge for all positive €.
At the end of the paper, we discuss some consequences foriniraum entropy
coloring problem.

At first sight, it might seem surprising that MESC can be agipnated so well
whereas its father problem, the minimum cardinality setecgroblem, is noto-
riously difficult to approximate, see Feige [3]. We conclute introduction by
offering an intuitive explanation to this phenomenon. A sequential difference
between the two problems is the penalty incurred for usingii@ny sets. A min-
imum entropy cover is allowed to use a lot more sets than anmuim cardinality
cover, provided the parts of these extra sets are small.

The same phenomenon also appears when one compares theimiogrdi-
nality set cover problem to thminimum sum set cover problMSSC), see Feige,
Lovasz and Tetali [5]. The approximability status of thééda problem is similar

IThey claim that the greedy algorithm gives a 3 bits approtina(which is correct). How-
ever, their proof is flawed (e.g., see their Lemma 6). A shtfiggward fix gives an approximation
guarantee of 3-2loge ~ 5.8854 bits.



to that of MESC: the greedy algorithm approximates it withifactor of 4 and
achieving a factor of 4 ¢ is NP-hard, for all positivee. Furthermore, the tech-
niques used here for proving the corresponding results o68®&re comparable
to the ones used in [5] for MSSC, especially for the inappr@bility result.

2 Analysisof the Greedy Algorithm

We begin this section by exhibiting a family of instances dmch the greedy algo-
rithm perfoms poorly, namely, returns a solution whose egsteds the optimum
by roughly loge bits. Below, we use the following bounds on the factoriale3d

bounds are implied by the more precise bounds given, e.f§].in

Lemma 1. For any positive integef, we have

<£>Z<€! <2\/ﬁ<£>z.

Let/ be a positive integer. We let the pointswobe the cells of & x ¢! array and
. be the union of two collections’,o and.#jine €ach of which partition¥. The
sets in.7¢o are thef! columns of the array. For eacéh=1,...,¢, collection.Zine
contains/! /i sets of size which partition the-th line of the array. An illustration
is given in Figure 1. (While in the figure each setgj,e consists of contiguous
cells, we do not require this in general.) Each of the cabbest.”.o and .ine
directly yields a feasible solution for MESC, which we dencgspectively byfco
and fjine. Clearly, fine is one of the possible outcomes of the greedy algorithm
(sets are produced from bottom to top on Figure 1).
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Figure 1: The sets forming/iine

The respective costs @y and fjie are as follows:

o 1
ENT(fline) = — Zl T gll gm Iog€+log€!—zlog€!.



By the second inequality of Lemma 1, we then have
ENT( fiine) > log?+log?! — % log [2\/2n£(£)€] = ENT(fco1) + loge—o(1).

This implies that the cost dfjne is at least the optimum plus leg- o(1). We now
show that the previous instances are essentially the warthié greedy algorithm.
Because the two formulations of MESC given above are eqnvdb each other,
we can regard a covdr as a partition of the ground set. Accordingly, we refer to
the setsf ~1(S) as thepartsof f.

Theorem 1. Let fopt and s be a cover of minimum entropy and a cover returned
by the greedy algorithm, respectively. Then we have BERT< ENT(fopt) +
loge.

Proof. Fori =1,...,k, we letX; denote the-th part of fopr andx = |X;|. For
v eV, we leta, be the size of the part ofg containingv. We claim that the
following holds for allv and alli:

a, > x!. (3)

Let us consider the points & in the order in which they were assigned to sets of
. by the greedy algorithm, breaking ties arbitrarily. Comesithe j-th element of
X; assigned, say. In the iteration whew was assigned, the greedy algorithm could
have picked sef. Because at that time at mgst 1 points ofX; were assigned,
at leastx; — j + 1 points of§ were unassigned, and we haag> x; — j+ 1. This
implies the claim.

We now rewrite the entropy ofs as follows:

ENT(fG):_%v;IOQ%:__Zive log :——leogvex‘

By Inequality (3) and the first inequality of Lemma 1, we thevdx

X! ‘
ENT(fg) < —= z log = < —= z log f; < ENT(fopr) + loge.
0

Finally, we mention that MESC has a natural weighted versionhich each
pointv € V has some associated probabiliy. Again, we can associate to each



cover f a probability distributionq, . ..,qx). This time, we le; denote the prob-
ability that a random point is assignedSoby f, that is,

g = Pv-
ve fZ(S)

The goal is then to minimize (2), just as in the unweightedsieer. The greedy
algorithm easily transposes to the weighted case, and soalmenalysis. This is
easily seen when the probabilities are rational. Indeed llee a positive integer
such thaK py is integral for all pointsr. Now replicate each point in the ground set
Kpy— 1 times. Thus we obtain an unweighted instance which is atgriv to the
original weighted instance, in the following sense. Thermpm values of the two
instances are equal (Lemma 2, given below, forbids reglitaersions of a point
to be assigned to different sets) and the behavior of thedgrakgorithm on the
new instance is identical to its behavior on the originatdnse. The case of real
probabilities follows by a continuity argument.

3 Hardnessof Approximation

Before turning to the main theorem of this section, we std&rana which helps
deriving good lower bounds on the optimum. Lt (g) andr = (r;) be two
probability distributions oveR*. If S ;ri > S ;g holds for all¢, we say that
g is dominatedoy r. The lemma tells us that in such a case, the entropyisfat
least that of, provided thag is non-increasing (see, e.g., [9] for a proof).

Lemma2. Letq= (qg) and r= (r;) be two probability distributions oveX™ with
finite support. Assume that g is non-increasing, thatiis: qi,1 fori > 1. If q is
dominated by r, then we have ENjJ > ENT(r).

We now prove that no polynomial-time algorithm for MESC caitniave a
better constant approximation guarantee than the gregdyithim, unless P= NP.
Halperin and Karp [8] gave a polynomial time approximaticheme (PTAS) for
the problem. Our result does not contradict theirs sincd>&S they designed is
multiplicative, i.e., returns a solution whose cost is n{ast ) times the optimum.

Theorem 2. For everye > 0, it is NP-hard to approximate the minimum entropy
set cover problem within an additive term (@ — €)loge. This remains true on
instances such that every point is in the same number of edte\aery set has the
same size.

Proof. A 3SAT-6 formulas a CNF formula in which every clause contains exactly
three literals, every literal appears in exactly three s#ay and a variable appears
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at most once in each clause. Such a formula is said W@-batisfiableif at most

a o-fraction of its clauses are satisfiable. It is known thatiigglishing between

a satisfiable 3SAT-6 formula and one whichdissatisfiable is NP-hard for some
o with 0 < d < 1, see Feige et al. [5]. In the latter reference, the autHimyistly
modified a reduction due to Feige [3] to design a polynoniimktreduction asso-
ciating to any 3SAT-6 formulg a corresponding set syste®ig ) = (V,.). They
used the new reduction to prove that the minimum sum set qoedlem is NP-
hard to approximate to within-2 € on uniform regular hypergraphs (see Theorem
12 in that paper). For any given constaats 0 andA > 0, it is possible to set the
values of the parameters of the reduction in such a way that:

e the sets of” have all the same size/t, wheren denotes the number of
points inV, and every point of is contained in the same number of sets;

e if ¢ is satisfiable, theW can be covered blydisjoint sets of?;

o if ¢ is O-satisfiable, then everysets chosen fron¥” cover at most a +
(1—1/t)' + A fraction of the points o¥/, for 1 <i < ct.

Suppose from now on that is a 3SAT-6 formula which is either satifiable ¢
satisfiable, and denote Hypt an optimal solution of MESC with inpu$(¢ ). For
1<i <k letqg = qi(fopr) be defined as in (1). Far> k, we letg, = 0. Letting
g denote the sequende;), we assume without loss of generality tlipis non-
increasing.

If ¢ is satisfiable, then it follows from Lemma 2 that the optin@lgion con-
sists in covering/ with t disjoint sets. Hence, ENTopt) = ENT(q) = logt in
this case. Assume now thatis d-satisfiable. Letr = £/2,A = a?/2—a3/6 and
c=—InA.

Claim 1. The following lower bound on the optimum holds:
ENT(q) > logt + (1—&/2)loge+0(1),

where @1) tends to zero when t tends to infinity.

Claim 1 implies that any algorithm approximating MESC witltan additive
term of (1— €)loge can be used to decide whetteis satisfiable ob-satisfiable.
Indeed, as noted in [5],may be assumed to be larger than any fixed constant. The
theorem then follows.



In order to prove the claim, we define a sequenee(r;) as follows (see Fig-
ure 2 for an illustration):

1/t for1<i<Jat],

(1—-1/t)"Y/t  for [at] +1<i< [&],
T 1os®n fori= et 11,

0 otherwise,

wherec’s a real such that

mTﬂJr(l—l/t)“’” —(A-1)%=1 (4)

By our choice of parameters, we can assufoé| + 1 < |&t] by lowering € if
necessary. From the definition ofvé have

et
Ztlri = [Ot’—” +@a-1plt @110 <1

Therefore, the sequences a probability distribution ovelN ™.

Figure 2: The shape of distribution= (r;) fort = 20 ande = 1/2
By the properties 08(¢) we have
¢ ¢ ,
G<et and S g <l-(1—1/) +A (5)
2 2

for 1 < /¢ <|ct], and it can be checked thatc for t large enough.

Claim 2. Sequence q is dominated by sequence r, that is, fdnaé have

éiqi < iiri- (6)



For 1< ¢ < [at], Inequality (6) readily follows from the definition afand
Equation (5). Notice that we have

1-(1-1) A <1-(1—a+a?/2—a®/6)+ A =a <[at]/t (7)

whenevett is large enough. Hence, foot] +1 < ¢ < [€t], from Equations (5)
and (7) we derive

iqi S1-(1-2/0 A =1- (1= A+ é (1-1/) 1t
= i=[at]+1
l

<(at1/t+ z (1-1/t) "1/t = Zl

=[at|+1

Finally, note that (6) is also true fér> | €t|, as theg;’s andr;’s both sum up to 1. It
follows thatq is dominated by. In other words, Claim 2 holds true. By Lemma 2,
we have ENTq) > ENT(r). In order to show Claim 1, it then suffices to prove the
following claim.
Claim 3. We have EN{r) > logt + (1—¢/2)loge+ o(1).

The entropy of can be expressed as follows:

|&t|+1 &)

ENT(r) = — Zl rilogri = —eri logr; +0o(1)

[t i-1 i—1
_ [at] logt — (1-1/1) log (-1 +0(1)
t i=[at]+1 t t
1 &) _
= alogt+ rlogi— > (i-pa-1m)tt
i=[at|+1

1 |&t] _
+Zlogt Y (1-1/t) "t +o0(2).
t i=[at]+1

Let B :=Ilim{_ €. In the sum above, the second and third terms are asymphptica
equal to respectively log ((1+a)e @ — (1+B)e P)andlog - (e @ —e F). This
is shown in Lemmas 3 and 4 in the appendix. It follows from Higua(4) that

B=-In(a+e?-1).



In virtue of this equation and by what precedes, we can rewhi entropy of as

ENT(r) = alogt +loge- (1+a)e™® — (1+B)e P) +logt- (7% —eP) +0(1)
—(a+e%—eP)logt+((1+a)e®—(1+B)eP)loge+o(1)
—=logt+ ((1+a)e™® — (1+B)e P)loge+o(1).

By Lemma 5 (see the appendix), we know tha ? — Be B is nonnegative pro-
vided¢ is sufficiently small. Claim 3 follows then by noticing

(1+a)e%—(1+BeP=1-a+ae?—BeP>1-a=1-¢/2

Hence, Claim 1 and the theorem follow. O

4 Graph Coloringswith Minimum Entropy

There are situations where the collection of séts- {S;, ..., &} input to the min-
imum entropy set cover problem is given implicitly. One pbdgisy, which is the
focus of this section, is to defin& as the collection of all inclusion-wise maxi-
mal stable sets of some (simple, undirected) gi@ph (V,E). The corresponding
variant of MESC is known as theninimum entropy coloring probledMEC). It
stems from information theory, having applications in zermr coding with side
information [1]. Notice that, by our choice of’, every coverf can be regarded as
a (proper) coloring of the grap@.

The results of Section 2 directly apply to MEC. The greedysdtgm, trans-
posed to the setting of MEC, constructs a coloring=dby iteratively removing a
maximum size stable set fro@ Of course, its running time can no longer be guar-
anteed to be polynomial, unless P = NP. Theorem 1 impliesat@nfing result,
which again holds in the weighted case.

Corollary 1. Let fopt and s be a coloring of G with minimum entropy and a
coloring returned by the greedy algorithm, respectivelyeit we have ENTg) <
ENT( fopT) + Ioge.

The bound given in Corollary 1 is asymptotically tight besathe bad MESC
instances described in the beginning of Section 2 can bé/ dasied into MEC
instances. Indeed, for a givénit suffices to consider the graygh obtained from
the complete graph o by removing every edge which is entirely included in
some set 0f¢o1 OF Hine.-

Clearly, the greedy algorithm runs in polynomial time whestricted to graphs
in which a maximum weight stable set can be found in polynbtim@e. This in-
cludes perfect graphs [7] and claw-free graphs [10]. So M&Che approximated
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within an additive term of log on such graphs, in polynomial time. In contrast, for
arbitrary graphs it is known that for ammy> 0 there is no polynomial-time approxi-
mation algorithm whose additive error is bounded by- €)logn unless ZPP=NP.
This was proved by the authors in [2] using as a black-box apgroximability
result for the minimum cardinality coloring problem due tidge and Kilian [4].
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Appendix
Lemma 3. If a, 8 and€ are defined as in the proof of Theorem 2, we have

&
%logL T (- 1(1- 1/ = loge: (1+a)e™® — (1+B)e ) +o(1).

t— li:[aﬂJrl

Proof. For any positive integef, we have

i(i —1(1-1/t) 1= _ii(l— 1/t) -1 - _i(l— 1/t) 1

=t?(1— fl(£+ D(1-1/t)" - (1-1/t)"1
—t(1-(1-1/1)")
=t2(1— (1+£/)(1-1/1)") —t(1— (1 - 1/1)").

It follows that we have

1 t & i1
T Iogm__ Z (i—1)(1-1/1)
i=[at|+1
— 1'|0 L
“1% 1

—(1— (14 [at] /)1 — 1/ 4 t(1— (1 - 1/t)[“ﬂ)]

[t2(1— (1+ [&) /1) (1— 1/1)1%) —t(1— (1— 1/1)!&)

The right-hand side of the latter equation can be rewritien a

tlog ti—l((1+ [at]/t)(1— 1/t — (1+ (&) /) (1 - 1/1)'Y)

Hlog= (1= 10! — (- 1)), ®)
Now, from¢t—1 < |€t| < €t, we infer:

1-1t)%<@a-1/0)® <(1-1/H)% 1,

Becausect’= Bt 4 o(t) and (1 — 1/t)°Y = 1+ o(1), the above upper and lower
bound on(1—1/t)!% are asymptotically equal te"?. Hence, we havél—
1/t)l% = e B £ o(1). A similar argument show$l — 1/t)/9 = e~ 4 o(1).

Hence, whert tends tow, the first term of (8) tends to lag ((1+ a)e @ — (1+
B)e P), and the second term tends to 0. The lemma follows. O
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Lemma4. Witha, 3 and€ defined as in the proof of Theorem 2, we have

1 & _
~logt ; (1-1/t)"t=logt- (e —eP)+o0(1).
t i=[at]+1

Proof. Because we have

L&t
t (L-1) =t -1/ —(1-1/0)),
i=[at]+1

it suffices to prove the following equalities:
logt- ((1—1/t)[9 —e~) =0(1) and (9)
logt- ((1—1/t)l% — e B) = o(1). (10)
For allt, we have
et_1/2<1-1/t<e N

and hence
(et —1/2?)latl < (1—1/p)lotl < g Tatit, (11)

Using the Binomial theorem, we can bound the left-hand sfd&é1 as follows:

(e _1/22)lat] — [gj <Wﬂ>e(mﬂi)/t(_l/2tz)i

[at]
> e fatlft <[ait—‘>e—((aﬂ—i)/t(_l/2tZ)i
ilozdd

>eloti/ty Z)(at +1)(at)?(—1/22)2+1
J:
1
1-a2/az

Equations (11) and (12) together yield (recall thean be assumed to be large, so
logt is positive):

>e [t _(q/2t+1/2t%) - (12)

1
(e~ lati/t _gmay . 2y, =
logt - (e e ") —logt-(a/2t+1/2t%) -
<logt-((1—1/0)/@ —e™9) <logt- (e[ — ). (13)

From the implications

at<[at] <at+l=a<[at]/t<a+1/t=>e M <elatit <ga
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we infer:
e %logt- (e ¥ —1) <logt- (e[t —e~®) <0

Since log - (e"V/' — 1) is asymptotically zero, both the upper and lower bound in
Equation (13) are asymptotically zero, and Equation (9pvas.
Finally, in order to prove that Equation (10) holds, we stamtn the following
bounds or(1— 1/t)l%:
- 1/0% < (-1 < (1- 108t = -1

Note that we havél — 1/t)% = [at]/t + (1 —1/t)[9 — 1 by the definition ofc;
see Equation (4). Therefore, we can boundt lqgl — 1/t)!€) —eF) as follows
(recall thate # = a +e 9 — 1):
logt- ([at]/t+(1—1/t)l —q —e™®)
<logt-((1—-1/t)l% —eP) <
Iogt-ﬁ((ort}/tjt(l—l/t)mﬂ —1—t:1a—t:1e*“ +t:1).

By Equation (9), both bounds are asymptotically zero. TloeeeEquation (10)
holds. This concludes the proof. O

Lemmab. Lettinga = a(g) and = B(¢) be defined as in the proof of Theorem
2, we havere ? > Be P provided thate is small enough.

Proof. Becausg3 = —In(a +e~ % — 1), we have to show
ae > —In(a+e?—-1) - (a+e?-1). (14)
For all a, we have

a? a. a? a3 a?
~ M1-Y=___=" < 1<
gl-g)=5 —g=sate -1=5
and hence

2

—(In%erIn(l—%))-% >—-In(a+e?%-1) - (a+e -1).

Now, as can be readily checked, ®osufficiently small (recall thatr = €/2), we

have ) )
a a a. a

0> > (In=—+In(1l—=2)) —.

ae 252 (n2+n( 3)) 5

The lemma follows.
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