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Abstract

The binary choice polytope appeared in the investigation of the binary choice prob-
lem formulated by Guilbaud (1953) and Block and Marschak (1960). It is nowadays
known to be the same as the linear ordering polytope from operations research
(Grötschel, Jünger and Reinelt, 1985). The central problem is to find facet-defining
linear inequalities for the polytope. Fence inequalities constitute a prominent class of
such inequalities (Cohen and Falmagne 1978, 1990; Grötschel, Jünger and Reinelt,
1985). Two different generalizations exist for this class: the reinforced fence inequal-
ities (Leung and Lee, 1994; Suck, 1992) and the stability-critical fence inequali-
ties (Koppen, 1995). Together with the fence inequalities, these inequalities form
the fence family. Building on previous work on the biorder polytope (Christophe,
Doignon and Fiorini, 2004), we provide a new class of inequalities which unifies all
inequalities from the fence family. The proof is based on a projection of polytopes.
The new class of facet-defining inequalities is related to a specific class of weighted
graphs, whose definition relies on a curious extension of the stability number. We in-
vestigate this class of weighted graphs which generalize the stability-critical graphs.
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1 Introduction

A well-known problem of mathematical psychology and economics asks for a
characterization of the binary choice probabilities that are generated by ran-
dom linear orderings of the alternatives (Guilbaud, 1953; Block and Marschak,
1960). This problem was turned into the search for all facet-defining inequal-
ities of a certain (convex) polytope (Megiddo, 1977), thus dubbed the ‘bi-
nary choice polytope’. On the other hand, a polytope called the ‘linear order-
ing polytope’ appeared in operations research as a tool for building an opti-
mal solution to the linear ordering problem (Grötschel, Jünger, and Reinelt,
1985a,b). It took some time before it was realized that the two polytopes are
one and the same (see for instance Suck, 1992). In both disciplines, the cen-
tral problem is that of listing as many facet-defining inequalities as possible—
geometrically, one simply asks for facets. Because the problem of finding an
optimal linear ordering is known to be NP-hard (Karp, 1972), there is little
hope that a complete list of all facets will ever be established. Nevertheless,
it is interesting to produce new facets because each of them at the same time
gives a new necessary condition for binary probabilities to admit a random
representation, and can also be put to good use in the optimization problem.
In contrast, the multiple choice problem astonishingly admits an explicit solu-
tion established by Falmagne (1978, 1979) (for a maybe more clarifying proof,
see Fiorini, 2004).

The first general scheme of facets of the binary choice vs. linear ordering poly-
tope was discovered both in mathematical psychology and in operations re-
search. Cohen and Falmagne (1978, 1990) and Grötschel et al. (1985b) indeed
introduced each on their own a family of facets which surpass the most obvious
facets (although at some time in the past, the latter were thought to be the
only ones). These facets are called the ‘fence inequalities’. Some years later,
two distinct generalizations were proposed. First, the introduction of weights
in the basic fence inequalities produced the ‘reinforced fence inequalities’ (Le-
ung and Lee, 1994; we notice that Suck, 1992, found later the same result
but published it earlier, again an illustration of parallel developments). The
second generalization led through several successive steps (McLennan, 1990;
Fishburn, 1990; Koppen, 1991) to ‘stability-critical fence inequalities’. Here
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appears a marvelous connection between two distinct topics, due to Koppen
(1995): the latter inequalities are essentially in a one-to-one correspondence
with ‘stability-critical graphs’ (the simplest case, the fence inequality, corre-
sponds to complete graphs).

Our contribution consists in a unification of the above two generalizations of
fence inequalities via weighted graphs. To any weighted graph, we associate
an inequality that is valid for the linear ordering polytope. These inequali-
ties, which we call ‘graphical inequalities’, were first studied in the context
of ‘biorder polytopes’ by Christophe, Doignon, and Fiorini (2004). When a
graphical inequality defines a facet of the linear ordering polytope, the corre-
sponding weighted graph is called a ‘facet-defining graph’, or FDG in short.
Since FDGs generalize stability-critical graphs, we survey in Section 6 known
results about the latter graphs. In particular, we emphasize the role of the
‘defect’ in attempts to classify stability-critical graphs. Section 7 is devoted
to basic results on FDGs, some of them taken from Christophe, Doignon, and
Fiorini (2004). The following section introduces the ‘defect’ of a FDG and
establishes several of its properties. It concludes with the first steps into the
classification of FDGs with a small defect.

To summarize, our contribution goes beyond providing a common generaliza-
tion for the fence family. We also establish a list of properties of the corre-
sponding FDGs. In this respect, our work is parallel to that of Lipták and
Lovász (2000, 2001) who also investigate a generalization of stability-critical
graphs in connection with (other) polytopes. Before focusing on FDGs, we
formally describe in Sections 2 and 3 the fence family and the graphical in-
equalities, respectively. Then in Section 4 we collect prerequisites on biorders,
relying on Doignon, Ducamp, and Falmagne (1984). Section 5 introduces a
projection from the linear ordering polytope onto the biorder polytope. The
projection is then used to prove that a graphical inequality is facet-defining
for the linear ordering polytope if and only if it is facet-defining for the biorder
polytope, except in one particular case.

This paper is heavily influenced by the work of Jean-Claude Falmagne. The
senior author (J.-P. D.) was exposed by him to biorders in 1980 and to the
binary choice polytope in 1988. All three authors are glad to dedicate their
present contribution to Jean-Claude.

2 Background and the Fence Family

Let X, Y be finite sets, and let R denote a relation from X to Y . As relations
are always considered in this paper as sets of ordered pairs, R is a subset of
X × Y . We often use ij as an abbreviation for (i, j) and write i R j when
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the pair ij belongs to the relation R. In order to encode R geometrically, we
resort to the real vector space R

X×Y , which has one coordinate per element
of X × Y . The coordinate of the pair ij is denoted by xij . The characteristic

vector of R is the vector xR in R
X×Y such that xR

ij = 1 if ij ∈ R and xR
ij = 0

otherwise.

Now let Z be a third finite set. A linear ordering on Z is a reflexive, transitive,
antisymmetric and complete relation on Z, i.e., from Z to Z. The binary

choice polytope or linear ordering polytope is defined as the convex hull in
R

Z×Z = R
Z2

of the characteristic vectors xL of all linear orderings L on Z.
We denote it by P Z

LO. Formally, we have

P Z
LO = conv{xL ∈ R

Z2

| L is a linear ordering on Z}. (1)

The linear ordering polytope has precisely one vertex per linear ordering on
Z. Note that the whole polytope lies inside the affine subspace defined by
the equations xii = 1 for i ∈ Z and xij + xji = 1 for i, j ∈ Z, i 6= j.
Because these equations form a complete and irredundant system of equations
for the polytope, we have dim P Z

LO = |Z|(|Z| − 1)/2. Consequently, there is no
unique way to write a facet-defining inequality. We remark that besides the
obvious symmetries derived from the permutations of the base set Z or from
the reversal of all linear orderings, the polytope admits ‘strange’ symmetries
found by McLennan (1990) and Bolotashvili, Kovalev, and Girlich (1999). The
full group of symmetries was characterized by Fiorini (2001).

Classes of facet-defining inequalities for the linear ordering polytope are now
described. Because they are all related to the fence inequalities (defined below),
we collectively refer to them as the fence family. In the rest of the section, V
and W are disjoint subsets of Z with the same cardinality, and f is a bijective
mapping from V to W . A fence inequality is any inequality of the form

∑

i∈V

xif(i) −
∑

i∈V,j∈W

j 6=f(i)

xij ≤ 1. (2)

Notice that, traditionally, the fence inequality is written in another, equiva-
lent form. This inequality was independently discovered by Grötschel, Jünger,
and Reinelt (1985a) and by Cohen and Falmagne (1990). Although the latter
reference was published five years after the former, the working paper version
dates back to 1978.

Proposition 1 (Grötschel et al., 1985a; Cohen and Falmagne, 1990)
The fence inequality (2) defines a facet of the linear ordering polytope P Z

LO

whenever |Z| ≥ 2|V | = 2|W | ≥ 6.

A first idea to generalize the fence inequalities is to multiply all the terms of
the form xif(i) in Inequality (2) by an integer t with 1 ≤ t ≤ |V | − 2. The
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resulting inequality,

∑

i∈V

t xif(i) −
∑

i∈V,j∈W

j 6=f(i)

xij ≤
t(t + 1)

2
, (3)

is called a reinforced fence inequality. Although these inequalities were given
a name by Leung and Lee (1994), they were implicitly known before as special
cases of Gilboa’s ‘diagonal inequalities’ (Gilboa, 1990, working paper of 1985).
They were independently discovered also by Suck (1992).

Proposition 2 (Leung and Lee, 1994; Suck, 1992) The reinforced
fence inequality (3) defines a facet of the linear ordering polytope P Z

LO whenever
|Z| ≥ 2|V | = 2|W | ≥ 6 and 1 ≤ t ≤ |V | − 2.

A second generalization of the fence inequality, due to Koppen (1995), arises
when the complete graph implicit in the structure of the fence inequality is
replaced by an arbitrary graph. Let thus G be any graph with vertex set V (G)
and edge set E(G) (for graph terminology, we usually follow Diestel, 2005).
The stability number α(G) of G is the largest cardinality of a stable subset of
V (G), where a set of vertices is stable if its vertices are mutually nonadjacent.
Considering as before V and W , two disjoint subsets of Z with the same
cardinality, and a bijective mapping f : V → W , we assume now V = V (G).
The inequality

∑

v∈V (G)

xvf(v) −
∑

{v,w}∈E(G)

(xvf(w) + xwf(v)) ≤ α(G) (4)

is easily seen to be valid for the linear ordering polytope. Koppen (1995)
gave the following characterization of the graphs G for which Inequality (4) is
facet-defining.

Proposition 3 (Koppen, 1995) Inequality (4) defines a facet of the linear
ordering polytope if and only if G is the one-vertex graph or G has at least
three vertices, is connected and stability-critical.

A graph G without isolated vertex is said to be stability-critical if its stability
number increases whenever an edge is removed from its edge set. When G
satisfies the conditions of Proposition 3, we call Inequality (4) a stability-

critical fence inequality.

Observe that when G is a complete graph with at least three vertices, Inequal-
ity (4) is a fence inequality. Hence stability-critical fence inequalities generalize
fence inequalities. Two more special cases of stability-critical fence inequalities
have been considered in the literature. The first special case occurs when G
is an odd cycle. The corresponding inequalities were discovered independently
by Grötschel et al. (1985a), McLennan (1990) and Fishburn (1990). The sec-
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ond special case, which subsumes the first, occurs when G is the graph Cℓ
n

with vertex set V (Cℓ
n) = {1, 2, . . . , n} and edge set

E(Cℓ
n) = {{i, j} | i, j ∈ V, 0 < min{|i − j|, |k − i − j|} ≤ ℓ}, (5)

and with 3 ≤ 2ℓ + 1 ≤ n. The corresponding inequalities were investigated
independently by Bolotashvili (1987) under the name (n, ℓ+1)-fence inequali-

ties, and by Koppen (1991). It is known that α(Cℓ
n) = ⌊n/(ℓ+1)⌋ and that Cℓ

n

is stability-critical if and only if ℓ + 1 divides n + 1. Apparently, Bolotashvili
(1987) showed that the (n, ℓ + 1)-fence inequalities define facets of the linear
ordering polytope, provided that ℓ + 1 divides n + 1.

We remark that by applying certain nonobvious symmetries of the linear or-
dering polytope to the facet-defining inequalities given above, one obtains new
facet-defining inequalities. Some of them were studied in the literature, as for
instance the augmented fence inequalities of McLennan (1990) and Leung and
Lee (1994), and the augmented reinforced fence inequalities of Leung and Lee
(1994). Other examples are given in Bolotashvili, Kovalev, and Girlich (1999).

3 Graphical Inequalities

In the preceding section, we have seen two different generalizations of the fence
inequalities. The first changes the coefficients of the positive terms and the
second changes the structure of the inequality by substituting any graph for
the complete graph. It is quite natural to combine both generalizations, which
is precisely what is done in this section.

A weighted graph is a pair (G, µ) where G is a graph and µ is a function
assigning an integral weight µ(v) to each vertex v of G. Let S be any subset
of the vertex set of G. We denote by µ(S) =

∑

v∈S µ(v) the total weight of S.
The worth (or net weight) of S is the difference between the total weight of S
and the number of edges in the subgraph of G induced by S. This number of
edges, denoted as ||G[S]|| in Diestel (2005), will be given here by the simpler
notation ||S||. Thus the worth of S equals

w(S) = µ(S) − ||S||. (6)

If S is of maximum worth amongst subsets of V (G) we say that S is tight.
We define α(G, µ) to be the worth of a tight set in (G, µ). That is, we let

α(G, µ) = max
S⊆V (G)

w(S). (7)

When µ = 1l, i.e., when the weight of each vertex is 1, we have α(G, 1l) = α(G).
Hence the parameter α(G, µ) can be considered as a generalization of the
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stability number of a graph to weighted graphs.

Let (G, µ) be a weighted graph whose vertex set V = V (G) is contained in
Z. We again assume that f is a bijection from V to a subset of Z which is
disjoint from V . The graphical inequality of (G, µ) reads

∑

v∈V (G)

µ(v)xvf(v) −
∑

{v,w}∈E(G)

(xvf(w) + xwf(v)) ≤ α(G, µ). (8)

Because of the choice of the right-hand side, the inequality is always valid for
the linear ordering polytope P Z

LO. When µ = 1l, it is identical to Inequality (4).
Moreover, when G is a complete graph and µ = t1l with 1 ≤ t ≤ |V | − 2, the
graphical inequality is a reinforced fence inequality.

We say that a weighted graph (G, µ) is facet-defining when its graphical in-
equality defines a facet of the linear ordering polytope, and moreover G has at
least three vertices (thus discarding the single weighted graph (K1, 1l) makes
later statements simpler). A vertex of a weighted graph is said to be degener-

ated if both its weight and its degree equal zero. In order to avoid trivial cases,
we always assume that a weighted graph has no degenerated vertex. We think
that understanding the structure of facet-defining graphs, in short FDGs, is a
nice and important research problem. By Proposition 3, this class contains all
connected stability-critical graphs except the complete graph K2. We survey
important results on stability-critical graphs in Section 6, and adapt some of
these results to the more general case of facet-defining graphs in Sections 7
and 8. We also provide results about FDGs which are of a new type.

Before starting to investigate FDGs, we need to establish when a graphical
inequality defines a facet of the linear ordering polytope. To this aim, we
make use of another polytope, namely the ‘biorder polytope’. In the next two
sections, we remind the reader about biorders and the definition and some
properties of the biorder polytope.

4 Biorders and the Biorder Polytope

Let X and Y be two finite sets. A relation B from X to Y is a biorder when

i B j and k B ℓ imply i B ℓ or k B j (9)

for all elements i, k ∈ X and j, ℓ ∈ Y . While biorders received various
names, for instance ‘Guttman scales’ (after Guttman, 1944), ‘Ferrers rela-
tions’ (Riguet, 1951), ‘bi-quasi-series’ (Ducamp and Falmagne, 1969), the term
comes from Doignon, Ducamp, and Falmagne (1984) (where the case of infi-
nite sets X and Y is also considered). The number of biorders from X to Y is
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a function of only |X| and |Y |, which is investigated in Christophe, Doignon,
and Fiorini (2003).

The biorder polytope P X×Y
Bio was introduced in Christophe, Doignon, and Fior-

ini (2004), with a definition similar to that of the linear ordering polytope.
Each biorder B from X to Y is encoded by its characteristic vector xB, consid-
ered as an element of the space R

X×Y (points in this space have one coordinate
xij for each ordered pair ij in X × Y ). The convex hull of all points xB in
R

X×Y , for B any biorder from X to Y , is the biorder polytope P X×Y
Bio . The

biorder polytope P X×Y
Bio has dimension |X| · |Y |.

The graphical inequality (cf. Equation (8)) has an even more natural definition
for the biorder polytope P X×Y

Bio than for the linear ordering polytope. Assume
the weighted graph (G, µ) satisfies V (G) ⊆ X, and f : V (G) → Y is an
injective mapping. The graphical inequality of (G, µ) for P X×Y

Bio reads

∑

v∈V (G)

µ(v)xvf(v) −
∑

{v,w}∈E(G)

(xvf(w) + xwf(v)) ≤ α(G, µ). (10)

The following results are adapted from Christophe et al. (2004). The graphical
inequality is valid for P X×Y

Bio . It defines a facet if and only if the tight sets of
(G, µ) satisfy a technical condition that we will formulate in Proposition 4
after having introduced some concepts. Let (G, µ) be a weighted graph. We
denote by E(S) the collection of edges contained in a set S of vertices. To
each tight set T of (G, µ), we associate the affine equation

∑

v∈T

yv +
∑

e∈E(T )

ye = α(G, µ). (11)

We thus form the system of (G, µ), also described as T · Y = A, where
the rows of the matrix T correspond to tight sets of (G, µ), the vector Y
contains the real unknowns yv and ye for v ∈ V (G) and e ∈ E(G), and
A = [α(G, µ) α(G, µ) . . . α(G, µ)]t.

Proposition 4 (Christophe et al., 2004) Let (G, µ) be a weighted graph
with at least three vertices. The graphical inequality of (G, µ), as in Equa-
tion (10), is facet-defining for the biorder polytope P X×Y

Bio if and only if the
system of (G, µ) has a unique solution.

The vector y defined by yv = µ(v) and ye = −1 for all v ∈ V (G), e ∈ E(G) is
always a solution to the system of (G, µ), so we require in Proposition 4 that
there is no other solution.

Assuming some relationships among X, Y and Z, we now proceed to show
that the graphical inequality is facet-defining for P X×Y

Bio if and only if it is facet-
defining for P Z

LO (with one exception). A projection from P Z
LO onto P X×Y

Bio will
be our main tool.
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5 Projection of the Linear Ordering Polytope onto the Biorder
Polytope

Let Z be any finite set, and X, Y be disjoint, nonempty subsets of Z. To any
relation R on Z we associate the induced relation from X to Y , which is the
intersection R∩ (X ×Y ). As we will now show, linear orderings on Z are then
exactly mapped onto the biorders from X to Y .

Proposition 5 Let X, Y and Z be as above. Any linear ordering on Z induces
a biorder from X to Y . Conversely, every biorder from X to Y is induced by
a linear ordering on Z.

PROOF. The intersection of any linear ordering on Z with X×Y is a biorder
from X to Y , as easily seen. Hence the first part of the proposition holds. To
show the second part, let B be a biorder from X to Y . Then the relation R
on Z obtained from B by adding all pairs ji ∈ Y × X with ij /∈ B is acyclic.
Hence R is contained in some linear ordering L on Z. By the choice of R, the
biorder from X to Y induced by L is exactly B. 2

We now build a projection from the linear ordering polytope P Z
LO onto the

biorder polytope P X×Y
Bio . First define the linear projection

π : R
Z2

→ R
X×Y : x 7→ x′ = π(x), (12)

where x′
ij = xij for ij ∈ X × Y . From Proposition 5, we see at once that π

maps the vertex set of the linear ordering polytope onto the vertex set of the
biorder polytope. Indeed, π maps a vertex xL of the linear ordering polytope
to the vertex xB of the biorder polytope, where B = L∩(X×Y ) is the biorder
induced by L. As a consequence, π maps the linear ordering polytope P Z

LO onto
the biorder polytope P X×Y

Bio . By the proof of Proposition 5, the vertices of the
linear ordering polytope which are mapped by π to a given vertex xB of the
biorder polytope correspond to the linear extensions of an acyclic orientation
of the complete bipartite graph with color classes X and Y determined by B.

We now switch to a more general setting in order to state and prove a lemma
which is instrumental for showing the main result of this section. Let P and Q
be two polytopes and let ρ̇ : P → Q denote a projection of polytopes, that is,
the restriction to P of an affine map ρ from the space in which P is defined to
the space in which Q is defined, mapping P onto Q. The projection ρ̇ yields a
lifting of the faces of Q to the faces of P : for every face F of Q the preimage

ρ̇−1(F ) = {x ∈ P | ρ(x) ∈ F} is a face of P . Consider a face F of Q. The
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plank of F is the vector subspace defined by

plank F = vect{q − p | p, q ∈ P and ρ(p) = ρ(q) ∈ F}, (13)

where vect A denotes the vector subspace spanned by A. Note that the plank
itself depends on a choice of origin in the ambient space of P , but its dimen-
sion is always the same. As we now show, this vector subspace is useful in
computing the dimension of the preimage of a face.

Lemma 6 For any face F of Q, we have

dim ρ̇−1(F ) = dim F + dim plankF. (14)

PROOF. Let W and U denote the two affine subspaces spanned by F and
its preimage, respectively. Let o be a point in the relative interior of ρ̇−1(F ).
Taking o as an origin in U and its image ρ(o) as an origin in W , we view U
and W as vector spaces. The affine map ρ restricts to a linear mapping R from
U onto W . As is easily verified, the plank of F computed with o as origin is
simply the kernel of R. The lemma then follows from the well-known equation
dim U = dim ker R + dim W . 2

Before turning to the main result of this section, we note the following lemma.

Lemma 7 If the preimage ρ̇−1(F ) of a face F of Q is a facet of P , then F is
itself a facet of Q.

PROOF. If F is not a facet of Q then there exists a facet F ′ of Q which prop-
erly contains F . Now the preimage of F ′ properly contains the preimage of F ,
so the preimage of F ′ equals P , contradicting the fact that ρ̇ is surjective. 2

We now go back to our initial case, where P = P Z
LO, Q = P X×Y

Bio and ρ = π.
Let π̇ denote the restriction of π to P Z

LO. Thus π̇ plays the role of ρ̇. Moreover,
we suppose V ⊆ X with some injective mapping f : V → Y .

Proposition 8 Let (G, µ) be a weighted graph with V = V (G). Assume the
graphical inequality (10) of (G, µ) defines a facet F of P X×Y

Bio . Then the preim-
age of F under π̇ is a facet of P Z

LO, unless (G, µ) = (K2, 1l).

The difference of the sets A and B will be denoted as A \ B.

PROOF. Since the assertion is easily verified when G has at most two ver-
tices, we can assume that G has at least three vertices. In virtue of the trivial
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lifting lemma for biorder polytopes (Christophe et al., 2004), we may assume
V = X and f(X) = Y . Similarly, because of the trivial lifting lemma for lin-
ear ordering polytopes (Grötschel et al., 1985a), we may assume Z = X ∪ Y .
Setting q = |Z|, m = |X|, we now have q = 2 m. It suffices then to prove the
inequality

dim plank F ≥ dim P Z
LO − dim P X×Y

Bio =
q(q − 1)

2
− m2. (15)

Indeed, this inequality together with Lemma 6 implies that the dimension of
the preimage of F is at least that of a facet of the linear ordering polytope. On
the other hand, the preimage of F is not the whole linear ordering polytope
because F is a proper face and π is surjective, hence π̇−1(F ) is a facet of P Z

LO.

Notice that the right-hand side of Equation (15) is the number of unordered
pairs {k, k′} such that k, k′ ∈ X or k, k′ ∈ Y . We denote by ekk′ the vector
in the canonical basis of R

Z2
that corresponds to the pair kk′. Let us show

that for all i, i′ ∈ X with i 6= i′, we get eii′ − ei′i ∈ plank F . As a similar
argument can be given for all j, j′ ∈ Y with j 6= j′, we are done because
altogether these 2 ·m(m− 1) vectors generate a vector subspace of dimension
m(m − 1) = q(q − 1)/2 − m2.

Case 1: {i, i′} ∈ E(G). By Proposition 11(C3) in Christophe et al. (2004), or
by Proposition 11(C4) of Section 7, there exists a tight set S avoiding both i
and i′. Pick any linear ordering M on S and list the elements of S by increasing
ranks as s1, s2, . . . , sℓ. Still abbreviating a pair as (x, f(y)) into xf(y), we let
B = {xf(y) | xy ∈ M}. Then B is a biorder from X to Y whose characteristic
vector is a vertex of F , according to Proposition 6 in Christophe et al. (2004).
Any linear ordering L on Z which has Y \ f(S) as initial set, X \ S as final
set and which satisfies s1 L f(s1) L s2 L f(s2) L . . . L sℓ L f(sℓ) induces B on
X × Y . There exist two such linear orderings L1 and L2 with L1 \ L2 = {ii′}
and L2 \ L1 = {i′i}. It follows xL1 − xL2 = eii′ − ei′i ∈ plank F .

Case 2: {i, i′} /∈ E(G). There exists some tight set S containing exactly one
vertex in {i, i′}. This is true because if no such S existed, the system in
Equation (13) of Christophe et al. (2004) would not have a unique solution,
contradicting the fact that F is a facet (or see Proposition 11(C7) in Section 7).
Without loss of generality, we assume i ∈ S and i′ /∈ S. Let M be any linear
ordering on S with i as its maximum, then B = {xf(y) | xy ∈ M} ∪ {i′f(i)}
is a biorder from X to Y such that xB is a vertex of F . The argument then
goes as in the first case above. 2

Using Lemma 7, we can easily show that the converse of Proposition 8 also
holds. Summarizing, we see that the following corollary holds.

11



Corollary 9 A graphical inequality is facet-defining for the linear ordering
polytope P Z

LO if and only if it is facet-defining for the biorder polytope P X×Y
Bio ,

except if the underlying weighted graph is (K2, 1l).

6 Stability-Critical Graphs

In this section, we briefly survey important results concerning stability-critical
graphs, thus complementing the report of Koppen (1995) (Section 7). We refer
the reader to Lovász and Plummer (1986) (pages 445–456) and Lovász (1993)
(pages 64–65) for a more detailed account.

We remind the reader that a graph is stability-critical if it has no isolated
vertices and removing any of its edges increases its stability number. One of
the first results concerning stability-critical graphs is due to Erdős and Gallai
(1961). They introduced the defect δ(G) = |V (G)| − 2 α(G) of a graph G and
proved its nonnegativity when G is stability-critical. The defect δ is a key
parameter in the theory of stability-critical graphs. Hajnal (1965) established
an upper bound of δ +1 on the degree of a vertex and Surányi (1975b) proved
that equality in the previous bound can occur for at most δ + 2 vertices if
δ > 1. Sewell and Trotter (1993) also proved that every connected, stability-
critical graph with defect at least two contains an odd subdivision of K4, that
is, the graph K4 where each edge is replaced by a path with an odd number
of edges.

From a general point of view, stability-critical graphs exhibit many different
structures and a satisfying characterization seems out of reach. Nevertheless,
more insight was obtained by considering them for a fixed defect. Indeed,
let G be a connected stability-critical graph (note that the assumption of
connectedness is not really restrictive, since a non connected stability-critical
graph consists of connected stability-critical components). If δ(G) = 0, the
theorem of Hajnal, recalled in previous paragraph, implies G = K2. For δ(G) =
1, it also implies that G is either a path or a cycle. Because paths and even
cycles have defect less than 1, G must be an odd cycle or, equivalently, an
odd subdivision of K3. Andrásfai (1967) proved that δ(G) = 2 occurs exactly
when G is an odd subdivision of K4. More generally, for each fixed natural
number δ there is a finite set of graphs such that if the defect of G is δ then
G is an odd subdivision of one of those. This was first proved for δ = 3 by
Surányi (1975b) and later for all δ by Lovász (1978).

As seen in the previous paragraph, odd subdivisions are useful for character-
izing stability-critical graphs of a given defect. In its simplest form, an odd
subdivision only trisects one edge, that is, it replaces the edge by a path com-
posed of three edges. Thus, an odd subdivision can be seen as a composition

12
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Fig. 1. An example of the construction of new stability-critical graphs.

of a certain number of trisections. It turns out that trisecting an edge is only
but a special case of a more general method to construct a connected stability-
critical graph by ‘gluing’ two smaller ones. In order to describe it, we need
the fact that connected stability-critical graphs are also 2-connected (Lovász,
1993). Let G1 and G2 be two connected stability-critical graphs other than
K2 and choose an edge {a, b} of G1 and a vertex c of G2. Define the graph G
from of G1 and G2 as follows (an example is given in Figure 1):

• take the disjoint union of G1 and G2,
• remove the edge {a, b},
• make each neighbor of c adjacent to exactly one vertex of {a, b}, ensuring

that a becomes adjacent to at least one such neighbor, and the same for b,
• remove the vertex c and all edges containing c.

Observe that G is 2-connected but not 3-connected, since removing the vertices
a and b disconnects G. One can check also that the equality δ(G) = δ(G1) +
δ(G2) − 1 holds. When we let G2 = K3, this construction is equivalent to
trisecting the edge {a, b} of G1 and leaves the defect unchanged (that is,
δ(G) = δ(G1)). Plummer (1967) first studied this construction when G1 is
a complete graph and later Wessel (1970a) extended its work by showing
that, in the above construction, the graph G must also be stability-critical
and moreover that every connected non-3-connected stability-critical graph
distinct from K2 arises in this way.

We conclude this section by mentioning other references concerning stability-
critical graphs: Beineke et al. (1967); Erdős et al. (1964); Harary and Plummer
(1967); Sewell and Trotter (1995); Surányi (1975a, 1978, 1980); Wessel (1968,
1975, 1978, 1970b); Zhu (1989).
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7 Facet-defining Graphs

Now considering weighted graphs as in Section 3, we will generalize stability-
critical graphs. We assume from now on that all graphs we consider have at
least three vertices. By Koppen’s result (Proposition 3), all connected stability-
critical graphs (with a constant weight 1 on all vertices) are such that their
graphical inequality defines a facet of the linear ordering polytope P Z

LO. Re-
member that the weighted graphs for which the graphical inequality defines
a facet of P Z

LO are the facet-defining graphs, or FDGs for short. Corollary 9
states that exactly the same weighted graphs produce a facet-defining inequal-
ity of the biorder polytope P X×Y

Bio (with some relationships between Z and X,
Y ). In this section we recall facts about FDGs obtained in Christophe et al.
(2004) and describe a first set of new results. The next section provides more
contributions about these graphs.

Let (G, µ) be a weighted graph. From Proposition 4 in Section 4 and Corol-
lary 9 in Section 5, we derive exactly when (G, µ) is facet-defining in terms of
the system T · Y = A of (G, µ). Here is a reformulation of the condition.

Corollary 10 A weighted graph (G, µ) is facet-defining if and only if for each
nonzero valuation λ : V (G) ∪ E(G) → Z there is a tight set T of (G, µ) with

∑

v∈T

λ(t) +
∑

e∈E(T )

λ(e) 6= 0. (16)

PROOF. By Proposition 4 and Corollary 9, (G, µ) is facet-defining if and
only if the system T · Y = A has only one solution. The latter condition
amounts to: the homogeneous system T · Y = 0 has only the zero solution. In
turn, this is equivalent to: the only linear combination of column vectors of T
which produces the zero vector has only null coefficients. By contraposing, we
get the claim. 2

Corollary 10 is useful to derive necessary conditions for a weighted graph to
be facet-defining, as illustrated in the next proposition.

Proposition 11 Let (G, µ) be a FDG. Then the following conditions hold:

(C1) G is 2-connected;
(C2) for all v ∈ V (G), we have 1 ≤ µ(v) ≤ deg(v) − 1;
(C3) for all {v, w} ∈ E(G), there is a tight set containing v and w;
(C4) for all {v, w} ∈ E(G), there is a tight set containing neither v nor w;
(C5) for all {v, w} ∈ E(G), there is a tight set containing v and not w;

14
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Fig. 2. Three specific FDGs.

(C6) for all v, w ∈ V (G), {v, w} /∈ E(G), there is a tight set containing either
both vertices v and w or none of them;

(C7) for all v, w ∈ V (G), {v, w} /∈ E(G), there is a tight set containing exactly
one vertex of {v, w}.

PROOF. (C1)–(C4) were already proved in Christophe et al. (2004) and we
refer to it for (C1) and (C2). We prove (C3)–(C7) by using Corollary 10 with
an appropriate choice for the valuation λ (this is a new proof for (C3)–(C4)).

(C3) Set λ({v, w}) = 1 and λ to zero elsewhere.
(C4) Set λ(v) = µ(v)−α(G, µ), λ(w) = µ(w)−α(G, µ), λ({v, w}) = α(G, µ)−

1, λ(u) = µ(u) for every u ∈ V (G) \ {v, w} and λ(e) = −1 for every
e ∈ E(G) \ {{v, w}}.

(C5) Set λ(v) = 1, λ({v, w}) = −1 and λ to zero elsewhere.
(C6) Set λ(v) = µ(v)−α(G, µ), λ(w) = µ(w)−α(G, µ), λ(u) = µ(u) for every

u ∈ V (G) \ {v, w} and λ(e) = −1 for every e ∈ E(G).
(C7) Set λ(v) = 1, λ(w) = −1 and λ to zero elsewhere.

It can easily be checked that each time the specific valuation λ ensures by
Corollary 10 the existence of a tight set with the desired property. 2

There exist FDGs showing that Conditions (C6) and (C7) of Proposition 11
cannot be strengthened as in (C3), (C4) and (C5). Examples are given in
Figure 2: in the left graph there is no tight set including the two vertices with
unit weight, in the central one there is no tight set avoiding the two vertices
with weight 2 and degree 3, and in the right one there is no tight set containing
the unit weight vertex and not the only vertex nonadjacent to it.

Proposition 3 states that all stability-critical graphs together with the weight
function 1l are facet-defining graphs (remember our present assumption that
graphs have at least three vertices). Many more FDGs are derived by apply-
ing together Corollary 9 and techniques of Christophe et al. (2004), as we
now explain. Let (G, µ) be a connected weighted graph. We say that (G, µ)
is a special facet-defining graph, abbreviated SFDG, if for each v ∈ V (G) we
have 1 ≤ µ(v) ≤ deg(v) − 1 and for each v, w1, . . . , wk ∈ V (G) such that
k = µ(v) and vw1, . . . , vwk ∈ E(G), there exists a tight set T of (G, µ) con-
taining v, w1, . . . , wk. These graphs are all FDGs, as shown by the following
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proposition.

Proposition 12 (Christophe et al., 2004) A SFDG is facet-defining, that
is, any SFDG is a FDG.

We note that in particular connected stability-critical graphs other than K2

equipped with the weight function 1l are SFDG by Proposition 11(C3) and by
Proposition 3. There exist FDGs which are not SFDGs, the three graphs in
Figure 2 for instance.

We complete this section by stating an interesting result from Christophe et al.
(2004) linking a weighted graph (G, µ) to the one obtained by taking deg−µ
as weight function, where deg : V (G) → Z assigns to each vertex its degree.
Recall that we have ||G|| = |E(G)|.

Proposition 13 (Christophe et al., 2004) Let (G, µ) be a weighted graph.
Then the following holds:

(1) α(G, deg−µ) = α(G, µ) −
(

µ(V (G)) − ||G||
)

,

(2) a set T ⊆ V (G) is tight in (G, µ) if and only if V (G) \ T is tight in
(G, deg−µ), and

(3) (G, µ) is facet-defining if and only if (G, deg−µ) is facet-defining.

In order to illustrate Proposition 13, we remark that the central graph in
Figure 2 is obtained from the left one using the described modification of the
weights.

8 The Defect of Facet-Defining Graphs

The defect of a graph G was defined in Section 6 as δ(G) = |V (G)| − 2 α(G).
We generalize the concept to weighted graphs by letting the defect of (G, µ)
be

δ(G, µ) = µ(V (G)) − 2 α(G, µ) (17)

(when µ = 1l, we have δ(G, µ) = δ(G)). We first observe a useful fact.

Proposition 14 Let (G, µ) be a weighted graph. Then δ(G, µ) = δ(G, deg−µ).

16



PROOF. The latter equality results from Proposition 13 in view of the fol-
lowing computations:

δ(G, µ) = µ(V (G)) − 2α(G, µ)

= µ(V (G)) − 2
(

α(G, deg−µ) + µ(V (G)) − ||G||
)

= 2||G|| − µ(V (G)) − 2α(G, deg−µ)

= deg(V (G)) − µ(V (G)) − 2α(G, deg−µ)

= δ(G, deg−µ). 2

In order to prove lower bounds on the defect of a FDG (G, µ) we consider
an enumeration of all its tight sets, say, T1, T2, . . . , Tk. This enables us to
explore the graph in the following way. We start from the empty graph and
add the tight sets T1, T2, . . . , Tk, one at a time. Clearly, the defect of (G, µ)
equals the total weight of G minus the worth of T1 and the worth of T2. We
first use some form of the inclusion-exclusion principle to write µ(V (G)) as
the weights of T1 and T2 plus the sum for i between 3 and k of the weight of Ti

minus the weight of a certain vertex set denoted by Xi. By using the fact that
the weight of any vertex set equals its worth plus the number of edges with
both endpoints included in it, we obtain an expression for the defect which
underlies our approach. Then, by analyzing the way the edges are discovered
during the exploration of the graph, we derive lower bounds on δ(G, µ).

For a sequence T = (T1, T2, . . . , Tk) of k sets of vertices in a weighted graph
(G, µ), we introduce 3 (k − 2) sets, for 3 ≤ j ≤ k:

BT
j = (∪j−1

h=1Th) ∩ Tj, CT
j = (∩j−1

h=1Th) \ Tj , (18)

and

XT
j = BT

j ∪ CT
j . (19)

We will simply write Bj, Cj and Xj when the corresponding sequence T is
clear from the context. The sets Bj and Cj are disjoint. Moreover, we have
Ci ∩ Cj = ∅ for 3 ≤ i 6= j ≤ k.

Lemma 15 Let (G, µ) be a weighted graph and T = (T1, T2, . . . , Tk) be a
sequence of subsets of V (G) with k ≥ 2. Then

µ(∪k
i=1Ti) + µ(∩k

i=1Ti) =
k

∑

i=1

µ(Ti) −
k

∑

j=3

µ(Xj). (20)

PROOF. For k ≥ 1, we let

Sk = µ(∪k
i=1Ti) + µ(∩k

i=1Ti).
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Then

S1 = µ(T1) + µ(T1), S2 = µ(T1) + µ(T2), (21)

and for j ≥ 3, as illustrated in Figure 3, we have

Sj − Sj−1 = µ(∪j
h=1Th) − µ(∪j−1

h=1Th) + µ(∩j
h=1Th) − µ(∩j−1

h=1Th)

= µ(Tj) + µ
(

(∪j−1
h=1Th) \ Tj

)

− µ(∪j−1
h=1Th) −

(

µ(∩j−1
h=1Th) − µ(∩j

h=1Th)
)

= µ(Tj) − µ
(

(∪j−1
h=1Th) ∩ Tj

)

− µ
(

(∩j−1
h=1Th) \ Tj

)

= µ(Tj) − µ(Bj ∪ Cj)

= µ(Tj) − µ(Xj). (22)

Equation (20) follows from Equations (21)–(22). 2

For a sequence T = (T1, T2, . . . , Tk) of tight sets of a weighted graph (G, µ),
we will need to count separately the edges in the Ti’s and in the Xj ’s. To this
aim, we define the ‘disjoint unions’ of the respective collections of edges:

TT = ∪k
i=1{(e, i) | e ∈ E(Ti)} = ∪k

i=1

(

E(Ti) × {i}
)

, (23)

and

XT = ∪k
j=3{(e, j) | e ∈ E(Xj)} = ∪k

j=3

(

E(Xj) × {j}
)

. (24)

As for XT
j = Xj, we simply write X and T when the corresponding sequence

T is clear from the context. The total number of tight sets of the weighted
graph (G, µ) under consideration will be denoted as s. A scenario of (G, µ) is
a list (T1, T2 , . . . , Ts) of all tight sets of (G, µ).

Lemma 16 Let (G, µ) be a FDG and T = (T1, T2, . . . , Ts) be a scenario of
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(G, µ). Then

δ(G, µ) = |T| − |X| +
s

∑

j=3

(w(Tj) − w(Xj)). (25)

Remember that ||S|| denotes the number of edges contained in the set S of
vertices.

PROOF. By Conditions (C3) and (C4) of Proposition 11 and the fact that
G is connected, we have ∪s

i=1Ti = V (G) and ∩s
i=1Ti = ∅. Lemma 15 then gives

µ(V (G)) = µ(∪s
i=1Ti) + µ(∩s

i=1Ti)

=
s

∑

i=1

µ(Ti) −
s

∑

j=3

µ(Xj)

= w(T1) + ||T1|| + w(T2) + ||T2||+
s

∑

j=3

(

w(Tj) + ||Tj||
)

−
s

∑

j=3

(

w(Xj) + ||Xj||
)

= 2α(G, µ) +
s

∑

i=1

||Ti|| −
s

∑

j=3

||Xj|| +
s

∑

j=3

(

w(Tj) − w(Xj)
)

= 2α(G, µ) + |T| − |X| +
s

∑

j=3

(

w(Tj) − w(Xj)
)

. 2

Building upon the previous lemma, we now show the positivity of the defect
of a FDG.

Proposition 17 The defect of any FDG (G, µ) satisfies δ(G, µ) ≥ 1.

PROOF. Taking again any scenario T = (T1, T2, . . . , Ts) of (G, µ), we refer
to Equation (25) in Lemma 16. Because Tj is assumed to be a tight set, we have
w(Tj) − w(Xj) ≥ 0. To prove δ(G, µ) ≥ 1, it suffices to show |X| ≤ |T| + 1.
We first exhibit an injective mapping ϕ from X to T, built for any given
scenario T . As will be seen, ϕ(e, j) = (e, j′) for some j′ in all cases. Then for
an appropriate choice of the scenario, we show the existence of an element in
T \ ϕ(X).

Let (e, j) ∈ X, for some j in {3, 4, . . . , s}, where e = {u, v}. Thus e ∈ E(Xj)
with Xj = Bj ∪ Cj . This leads to three cases.

Case 1. Assume e ∈ E(Bj). Because Bj ⊆ Tj, we have (e, j) ∈ E(Tj)×{j}. We
then set ϕ(e, j) = (e, j). Here is an illustration: the symbol ∗ indicates where
we select ϕ(e, j) (blank entries are undetermined and can be filled arbitrarily
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with ∈ or /∈).

T1 T2 T3 T4 T5 T6 T7 . . . Tj

u ∈ ∈

v ∈ ∈

∗

Clearly, distinct pairs (e, j) satisfying e ∈ Bj have distinct images.

Case 2. Assume e ∈ E(Cj). Because of the definition of Cj together with j ≥ 3,
we get e ∈ E(T1). We then set ϕ(e, j) = (e, 1).

T1 T2 T3 . . . Tj−1 Tj

u ∈ ∈ ∈ . . . ∈ /∈

v ∈ ∈ ∈ . . . ∈ /∈

∗

For each vertex w of e, the index j is the least value such that j ≥ 3 and
w /∈ Tj . Consequently, pairs (e, j) with e ∈ E(Cj) have distinct images by ϕ,
and all those images differ from the Case 1 images.

Case 3. Assume now u ∈ Bj and v ∈ Cj. Exchanging u and v if necessary, this
is the last possible case. Again, j is well defined from e. We consider subcases
according to the value c of the least index l such that u /∈ Tl (necessarily c 6= j
because u ∈ Bj ⊆ Tj).

Subcase 3.1. When c = 1, we take r = min{h | e ∈ E(Th)}, and set
ϕ(e, j) = (e, r).

T1 T2 . . . Tr−1 Tr . . . Tj−1 Tj

u /∈ /∈ . . . /∈ ∈ ∈

v ∈ ∈ . . . ∈ ∈ . . . ∈ /∈

∗

Because 1 < r and e /∈ E(Br), we conclude that all of these images are distinct
and moreover differ from the images obtained in Cases 1 and 2.

Subcase 3.2. When 2 ≤ c < j, we set ϕ(e, j) = (e, 1).

T1 T2 . . . Tc−1 Tc . . . Tj−1 Tj

u ∈ ∈ . . . ∈ /∈ ∈

v ∈ ∈ . . . ∈ ∈ . . . ∈ /∈

∗
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Distinct pairs falling in this case have distinct images by ϕ. For a fixed edge
e, there cannot exist two distinct pairs (e, j) in X such that one falls in Case 2
and the other one in Case 3, so images from the actual subcase differ from
those obtained in all preceding cases.

Subcase 3.3. The only remaining case is when j < c. We then set ϕ(e, j) =
(e, 2).

T1 T2 . . . Tj−1 Tj . . . Tc−1 Tc

u ∈ ∈ . . . ∈ ∈ . . . ∈ /∈

v ∈ ∈ . . . ∈ /∈

∗

Again, distinct pairs in this case have distinct images, and as it is the only case
where the pair (e, 2) can be selected, the injectivity of the resulting mapping
ϕ : X → T holds for any given scenario T .

Now, let e ∈ E(G) and choose tight sets T1, T2 such that e ⊆ T1 and e∩T2 = ∅

(these tight sets must exist by Proposition 11(C3) and (C4)). Take any scenario
starting with T1 and T2. Noticing (e, 1) ∈ T \ ϕ(X), we infer δ(G, µ) ≥ 1. 2

By Proposition 11, Condition (C2), we have deg(v) − µ(v) ≥ 1. Thus the
following result strengthens Proposition 17.

Proposition 18 Let (G, µ) be a FDG and v be any of its vertices. Then
δ(G, µ) ≥ deg(v) − µ(v).

In the particular case of stability-critical graphs, Proposition 18 gives deg(v) ≤
δ(G) + 1, a theorem of Hajnal (1965) (recalled in Section 6).

PROOF. Let T be a scenario of (G, µ) in which the tight sets containing
v are listed before those not containing v. Let Tl be the first tight set of T
which does not contain v. The set N(v) of neighbors of v is partitioned into
the three following subsets:

X =
(

N(v) ∩ T1

)

\ Tl,

Y = N(v) \ (T1 ∪ Tl),

Z = N(v) ∩ Tl.

Consider the injective mapping ϕ : X → T built in the proof of Proposition 17
for the scenario T . Then for all x ∈ X we get either ({v, x}, 1) ∈ T \ ϕ(X), in
case x /∈ T2, or ({v, x}, 2) ∈ T \ ϕ(X), in case x ∈ T2. Also, for all y ∈ Y , we
have ({v, y}, r) ∈ T \ ϕ(X), where r = min{h | {vy} ∈ E(Th)}. Consequently,
|T| − |X| ≥ |X ∪ Y | = deg(v) − |Z|.
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Moreover, we observe v /∈ Tl, v ∈ Xl and Bl ∩ N(v) = Z, Cl ∩ N(v) = ∅. It
follows, because Tl is tight, w(Tl)−w(Xl) ≥ w(Xl \{v})−w(Xl) = |Z|−µ(v).

Combining these two observations with Lemma 16 yields (remember that s is
the total number of tight sets)

δ(G, µ) = |T| − |X| +
s

∑

j=3

(

w(Tj) − w(Xj)
)

≥ |T| − |X| + w(Tl) − w(Xl)

≥ deg(v) − |Z| + |Z| − µ(v)

= deg(v) − µ(v). 2

Corollary 19 Let (G, µ) be a FDG and v be any of its vertices. Then µ(v) ≤
δ(G, µ).

PROOF. By Proposition 13, (G, deg−µ) is also a FDG and by Proposi-
tion 14, δ(G, µ) = δ(G, deg−µ). Applying Proposition 18 to (G, deg−µ) and
v gives the claim. 2

Combining Proposition 18 and Corollary 19 gives an upper bound of 2δ(G, µ)
for the degree of a vertex in a FDG (G, µ). Recently, one of us (G.J.) estab-
lished the stronger bound deg(v) ≤ 2δ(G, µ)− 1 when δ(G, µ) ≥ 2 (this is the
best possible bound: for each natural number d ≥ 2, there are examples of
FDGs (G, µ) with a vertex v such that deg(v) = 2δ(G, µ)−1 and δ(G, µ) = d).
When a vertex of a FDG satisfies a certain technical condition, we are able to
prove an even stronger result.

Proposition 20 Let (G, µ) be a FDG and v ∈ V (G) one of its vertices.
Suppose that for every set S of µ(v) neighbors of v there exists a tight set T
such that S ∪ {v} ⊆ T . Then deg(v) ≤ δ(G, µ) + 1.

For instance, the above assumption is fulfilled for every vertex when (G, µ) is
any SFDG (in the sense of Section 7).

PROOF. Let k = µ(v) and l = deg(v) − µ(v). By Proposition 11(C2), we
have l ≥ 1. When k = 1 the claim follows from Proposition 18, so we assume
k ≥ 2. Let W = {w1, w2, . . . , wk+l} be the set of neighbors of v. Let also
T = (T1, . . . , Ts) be a scenario of (G, µ) such that the first l + k + 1 tight sets
are specified as follows. For 1 ≤ i ≤ l + 1, the tight set Ti contains v, w1, w2,
. . . , wk−1, wk+i−1. For l + 2 ≤ j ≤ l + k, the tight set Tj contains v, w1, w2,
. . . , wj−l−2, wj−l, wj−l+1, . . . , wk+1. Finally, we let Tl+k+1 be a tight set such
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that {w1, w2, . . . , wk} ⊆ Tl+k+1 and v /∈ Tl+k+1. All these tight sets exist by
hypothesis, and they all contain exactly k neighbors of the vertex v.

Let now ϕ : X → T be the injective mapping defined for the scenario T as in
the proof of Proposition 17. Then ({v, wk+i}, i+1) ∈ T \ϕ(X) can be checked
for 1 ≤ i ≤ l. Also, for 1 ≤ j ≤ k, we have wj ∈ Cl+j+1 and v, w1, w2, . . . ,
wj−1, wj+1, . . . , wk+1 ∈ Bl+j+1, giving w(Xl+j+1\{v})−w(Xl+j+1) ≥ 1. Using
Lemma 16 we then deduce

δ(G, µ) = |T| − |X| +
s

∑

j=3

(

w(Tj) − w(Xj)
)

≥ |T| − |X| +
l+k
∑

j=l+2

(

w(Tj) − w(Xj)
)

≥ |T| − |X| +
l+k
∑

j=l+2

(

w(Xj \ {v}) − w(Xj)
)

≥ |T| − |X| + k − 1

≥ l + k − 1 = deg(v) − 1. 2

The defect was shown to be a useful invariant for the investigation of stability-
critical graphs, in particular for attempting to classify these graphs (see Sec-
tion 6). In view of the current section, the same assertion applies also to the
weighted case. We now make a first elementary step in the classification of
FDGs.

Proposition 21 FDGs of defect one are the odd cycles with the weight func-
tion 1l.

PROOF. Let (G, µ) be a FDG of defect one. By Proposition 11(C2) and
Corollary 19, it follows that µ = 1l. By Proposition 3, the graph G must be a
stability-critical graph of defect one, that is, an odd cycle. 2

One of the authors (G.J.) is currently investigating FDGs of defect 2. As
it is the case for stability-critical graphs (see Section 6), all such FDGs are
generated by repeatedly applying some well defined construction to a finite
number of basic graphs. Whether a similar result holds for all FDGs of any
fixed defect is a question left for future work.
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9 Conclusion

The whole family of fence inequalities for the linear ordering polytope have
been subsumed to a general form of facet-defining inequalities. Called the
graphical inequalities, the latter are built from specific weighted graphs. The
weighted graphs which define facets in this way generalize stability-critical
graphs. They are investigated, in particular with regard to their defect. We
point out that Corollary 9 and Proposition 13 imply that connected stability-
critical graphs produce a facet not only as in Koppen (1995) (that is, taken
with all weights equal to 1), but also when the weight of any vertex v is set
to the degree of v minus 1.

We mention that there are facet-defining inequalities for the linear ordering
polytope which are not graphical, for instance the Möbius inequalities: see,
e.g., Grötschel et al. (1985a), Borndörfer and Weismantel (2000), and Fiorini
(2006a,b).
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