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Abstract

We show that deciding if a mixed graph has a well-balanced orientation
is NP -complete.

1 Introduction

Consider the following problem: given an undirected graph G, orient the edges
of G in such a way that in the resulting directed graph ~G, we have at least
bλG(x, y)/2c directed edge-disjoint paths from x to y, for all x, y ∈ V (G). Here,
λG(x, y) denotes the maximum number of edge-disjoint paths between x and y
in G. Such an orientation of G is said to be a well-balanced orientation. An
important theorem of Nash-Williams [5] asserts that every graph has a well-
balanced orientation (see Frank [2] for a simpler proof). Also, as explained
in [3], a well-balanced orientation of G can be found in polynomial time.

The above mentioned theorem of Nash-Williams on the existence of well-
balanced orientations has intrigued many mathematicians since it was born
(which was quite long ago, in 1960). The reason for this is that the theorem,
the generalization of it which was in fact proved and the proof method itself is
so different from other results and methods in graph theory that no connection
with other areas has been found since then. We can say that not much more is
known about the problem since 1960. In [4] many approaches were presented
to obtain generalizations of this theorem, but with little success: most of the
questions raised there were answered negatively with counter-examples, though
some remained open. Here we decide one of these open problems.

Recently, several generalizations of the above problem were shown to be
NP -complete by Bernáth [1]. For instance, if for every edge {x, y} ∈ E(G) we
are given non negative costs cxy, cyx for orienting the edge from x to y, and
from y to x respectively, then deciding if G has a well-balanced orientation of
cost at most a given bound K is NP -complete.

In this note, we are concerned with the following special case of the problem:
we are given a graph G where some edges are already oriented (a mixed graph),
and we want to decide if the remaining undirected edges can be oriented in such
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H-1117. The author is a member of the Egerváry Research Group (EGRES). Research was
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a way as to obtain a well-balanced orientation of the underlying undirected
graph. The complexity of this problem was posed as an open question in [4].
We will show that it is also NP -complete:

Theorem 1. Deciding whether a mixed graph has an orientation that is a well-
balanced orientation of the underlying undirected graph is NP -complete.

2 The Reduction

For the reduction we need a special form of the Vertex Cover problem:

Lemma 1. Given a graph with 2n vertices and no isolated vertex, it is NP -
complete to decide whether there exists a vertex cover of size at most n.

Proof. It is well known that the Vertex Cover problem is NP -complete, we
will reduce it to the above problem. Assume we are given an instance of the
Vertex Cover problem consisting of a graph G = (V,E) and a positive integer
k where the question is whether G has a vertex cover of size at most k. We may
clearly assume that G has no isolated vertex. Distinguish the following cases:

1. If k = |V |/2 then we are done.

2. If k > |V |/2 then let G′ be the disjoint union of G and Kt,1 for t =
2k + 1 − |V |. Then G has a vertex cover of size at most k iff G′ has a
vertex cover of size at most k + 1. Since G′ has 2k + 2 vertices, G′ is an
instance of the problem in the lemma.

3. If k < |V |/2 then let G′ be the disjoint union of G and Kt for t = |V | +
2 − 2k. Then G has a vertex cover of size at most k iff G′ has a vertex
cover of size at most k+ t− 1. As G′ has 2(k+ t− 1) vertices, G′ is again
an instance of the problem in the lemma.

The reduction takes clearly polynomial time, hence the lemma follows. We note
that G′ has no isolated vertices. 2

Let us introduce some notations. A mixed graph will be denoted by a triple
(V,E,A) where V is the set of nodes, E is the set of undirected edges and A
is the set of directed edges. For a given directed graph D and x, y ∈ V (D), we
denote by λD(x, y) the maximum number of directed edge-disjoint paths from
x to y in D. Also, for S ⊆ V (D), we use %D(S) for the number of arcs in D
going from V (D) − S to S (when S = {v}, we simply write %D(v)). We note
that, by Menger’s theorem, we have

λD(x, y) = min
S ⊆ V (D),
x /∈ S, y ∈ S

%D(S).

We may now turn to the reduction.

Proof of Theorem 1. The problem is easily seen to be in NP , so let us prove
its completeness. To this end we will reduce the problem in Lemma 1 to our
problem using a construction similar to those in [1]. So suppose we are given an
instanceG′ = (V ′, E′) of the problem in Lemma 1. We remark that we wanted to
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Figure 1: Illustration of the reduction.

avoid isolated vertices in G′ only to make the following argumentation simpler.
Consider the following mixed graph M = (V,E,A): the vertex set V will contain
two designated vertices s and t, dG′(v) + 3 vertices yv, zv, xv

0, x
v
1, x

v
2, . . . , x

v
dG′ (v)

for every v ∈ V ′, and one vertex xe for every e ∈ E′. Let us fix an ordering of
V ′, say V ′ = {v1, v2, . . . , vn}. The arc set A of M contains a directed circuit on
s, zv1 , zv2 . . . , zvn in this order, a pair of oppositely directed arcs between s and
yv for every v ∈ V ′, arcs (zv, xv

0) and (xv
i , x

v
i+1) for i = 0, . . . , dG′(v) − 1 and

every v ∈ V ′, two parallel arcs from xe to s for every e ∈ E′ and finally for each
v ∈ V ′ take an arbitrary order of the dG′(v) = d edges of G′ incident to v, say
e1, e2, . . . , ed, and include the arc (xv

i , xei) for every i ∈ {1, . . . , d}.
The edge set E of M contains one edge between t and yv and one edge

between yv and xv
0 for every v ∈ V ′.

The construction is illustrated in Figure 1. The arcs with a label “2” indicate
a multiplicity of 2; the undirected edges are drawn in bold.

Let G be the underlying undirected graph of M and D = (V,A) be the
directed part ofM . Notice that λG(x, y) = min{dG(x), dG(y)} for every x, y ∈ V
(for example one can check that this is true if y = s from which it follows for
arbitrary x, y). Observe that D− t is strongly connected and that λD(xe, s) = 2
for each e ∈ E′.

Observe furthermore that the well-balanced orientations of M are necessarily
of the following form: the two edges of E incident to a vertex yv with v ∈ V ′

form a directed path of length two, and for exactly half (i.e. |V ′|/2) of these,
this path starts at t, and for the other half this path ends at t. In other words,
% ~M (yv) = 2 for all v ∈ V ′ and % ~M (t) = |V ′|/2 in any well-balanced orientation
~M of M . This is implied by the edge-connectivities in G.

If G′ has a vertex cover of size at most |V ′|/2 then it has one, say S, of
size exactly |V ′|/2. By orienting for every v ∈ V ′ the path t, yv, xv

0 from left to
right if v ∈ S, and from right to left otherwise, it is easily seen that we get a
well-balanced orientation of M .
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Suppose now that M admits a well-balanced orientation ~M and consider the
set S ⊆ V ′ of vertices of G′ for which the corresponding directed paths in ~M
start at t, that is

S := {v ∈ V ′ : (t, yv) and (yv, xv
0) are arcs of ~M}.

We claim that S forms a vertex cover of G′: if edge e = {vj , vk} ∈ E′ were not
covered by S (where j < k are the indices of the vertices in the fixed ordering),
then % ~M (X) = 1 would contradict the well-balancedness of ~M , where

X := {xe}
⋃
{zvi : j ≤ i ≤ k}⋃

{xvj

i : 0 ≤ i ≤ dG′(vj)}
⋃
{xvk

i : 0 ≤ i ≤ dG′(vk)}

(the vertices in grey in Figure 1 illustrate this cut). 2
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